K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

Áp dụng định lý hàm sin ta có:

\(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\) = \(\dfrac{Á_2}{sina}\) = \(\dfrac{A_3}{sinb}\)

⇒ A2 = \(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\)sina

Để A2 đạt giá trị lớn nhất, góc a bằng 90o, suy ra góc b bằng 60o

nên A1 = \(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\).sin60 = \(\dfrac{7,5}{\dfrac{sin\pi}{3}}\)

15 tháng 6 2016

Hỏi đáp Vật lý

18 tháng 7 2020

\(x_1^2+\frac{v_1^2}{\omega^2}=x_2^2+\frac{v_2^2}{\omega^2}\Rightarrow\omega=\sqrt{\frac{v_2^2-v_1^2}{x_1^2-x_2^2}}=10\pi\)

Do pt của 4 ngoại lực có biên độ bằng nhau, để con lắc dao động với biên độ nhỏ nhất trong giai đoạn ổn định thì \(\left|\omega-\omega_F\right|\) là lớn nhất

\(\Rightarrow\) Đáp án B đúng (không chắc lắm :( )

11 tháng 4 2017

Áp dụng công thức (5.1 và 5.2 - SGK) ta tìm được:

A = 2,3 cm và φ = 0,73π

Phương trình dao động tổng hợp là: x = 2,3cos(5πt + 0,73π) (cm).


25 tháng 7 2020

Ủa ko 1 ai trên trang này giải được hả ? 😔

23 tháng 7 2020

Hình vẽ cho câu hỏi :

Bài 5. Tổng hợp hai dao động điều hòa cùng phương, cùng tần số. Phương pháp giản đồ Fre-nen

12 tháng 10 2015

Áp dụng công thức độc lập, ta có: \(A^2 = x^2+\frac{v^2}{\omega^2} \Rightarrow\) \(8^2+\frac{12^2}{\omega^2} = 6^2+\frac{16^2}{\omega^2} \Rightarrow \omega = 2 \ (rad/s) \Rightarrow f = \frac{1}{\pi} \ Hz\)

7 tháng 9 2017

Vì sao w=2 vậy ạ