K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

Áp dụng công thức độc lập, ta có: \(A^2 = x^2+\frac{v^2}{\omega^2} \Rightarrow\) \(8^2+\frac{12^2}{\omega^2} = 6^2+\frac{16^2}{\omega^2} \Rightarrow \omega = 2 \ (rad/s) \Rightarrow f = \frac{1}{\pi} \ Hz\)

7 tháng 9 2017

Vì sao w=2 vậy ạ

30 tháng 5 2017

dap an c


31 tháng 5 2017

Làm tương tự bài này Câu hỏi của Nguyễn Lê Quỳnh Anh - Vật lý lớp 12 | Học trực tuyến

27 tháng 10 2015

Áp dụng: 

\(A^2 = x^2 + \frac{v^2}{\omega^2} = 3^2+\frac{40^2}{\omega^2}\) (1)

+ Qua VTCB, vận tốc cực đại: \(v_{max} = \omega A \Rightarrow 50 = \omega A\) (2)

Từ (1) và (2) \(\Rightarrow \omega = 10 \ (rad/s); A = 5 \ cm\)

+ Khi vận tốc đạt giá trị v3 = 30cm/s, ta có: \(x = \pm\sqrt{A^2-\frac{v^2}{\omega^2}} = \pm 4 \ cm\)

1 tháng 10 2015

Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)

Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)

31 tháng 5 2017

Áp dụng công thức: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow A^2=2,5^2+\dfrac{(50\sqrt 3)^2}{\omega^2}=(2,5\sqrt 3)^2+\dfrac{50^2}{\omega^2}\)

\(\Rightarrow \omega = 20(rad/s)\)

\(A=5cm\)

15 tháng 6 2016

Hỏi đáp Vật lýchọn A

13 tháng 6 2016

Bước sóng: \(\lambda=v/f=8cm\)

Số cực tiểu: \(2.[\dfrac{S_1S_2}{\lambda}+0,5]=2.[\dfrac{60}{8}+0,5]=16\)

Vì phép chia ở trên ra giá trị nguyên nên hai ta trừ giá trị 2 đầu mút.

Vậy số cực tiểu là: \( 16-2 =14 \)

18 tháng 7 2020

\(x_1^2+\frac{v_1^2}{\omega^2}=x_2^2+\frac{v_2^2}{\omega^2}\Rightarrow\omega=\sqrt{\frac{v_2^2-v_1^2}{x_1^2-x_2^2}}=10\pi\)

Do pt của 4 ngoại lực có biên độ bằng nhau, để con lắc dao động với biên độ nhỏ nhất trong giai đoạn ổn định thì \(\left|\omega-\omega_F\right|\) là lớn nhất

\(\Rightarrow\) Đáp án B đúng (không chắc lắm :( )