Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2-4x\)
\(\Rightarrow A=-x^2-4x-4+4\)
\(\Rightarrow A=-\left(x^2+4x+4\right)+4\)
\(\Rightarrow A=-\left(x+2\right)^2+4\)
mà \(-\left(x+2\right)^2\le0,\forall x\)
\(\Rightarrow A=-\left(x+2\right)^2+4\le0+4=4\)
Vậy GTLN của A là 4
\(B=-9x^2+24x-18\)
\(\Rightarrow B=-9x^2+24x-16+16-18\)
\(\Rightarrow B=-\left(9x^2-24x+16\right)+16-18\)
\(\Rightarrow B=-\left(3x-4\right)^2-2\)
mà \(-\left(3x-4\right)^2\le0,\forall x\)
\(\Rightarrow B=-\left(3x-4\right)^2-2\le0-2=-2\)
Vậy GTLN của B là -2
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
\(1;a,A=x^2+20x+101\)
\(A=x^2+2.10x+10^2+1\)
\(A=\left(x+10\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -10
Vậy Min A = 1 <=> x = -10
A = 2\(x\) - \(x^2\) - 4
A = -(\(x^2\) - 2\(x\) + 1) - 3
A = - (\(x-1\))2 - 3
Vì (\(x-1\))2 ≥ 0 ⇒ -(\(x\) - 1)2 ≤ 0 ⇒ -( \(x\) - 1)2 - 3 ≤ - 3
Amax = -3 ⇔ \(x\) - 1 = 0 ⇔ \(x\) = 1
Vậy giá trị lớn nhất của biểu thức là 0 xảy ra khi \(x\) = 1
B = - \(x^2\) - 4\(x\)
B = -( \(x^2\) + 4\(x\) + 4) + 4
B = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ - (\(x\) + 2)2 ≤ 0 ⇒ -(\(x+2\))2 + 4 ≤ 0
Bmax = 4 ⇔ \(x+2=0\Rightarrow x=-2\)
Kết luận giá trị lớn nhất của biểu thức là 4 xảy ra khi \(x\) = - 2
A= x^2-6x-9-4=(x-3)^2-4> hoặc bằng 0-4=-4
Dấu bằng xảy ra khi: (x-3)^2 = 0 => x-3=0 => x= 3
Vậy GTNN của A = -4 tại x = 3
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) 4x^2+4x+11
b) 3x^2-6x+1
c) x^2-2x+y^2-4y+6
Sẵn tiện chắc bạn cùng tuổi với mình, mình đang bí bài gần giống. Giúp nhau nhen
\(-9x^2+24x-18=-\left(9x^2-2\times3x\times4+16+2\right)\)
\(=-\left(3x-4\right)^2-2\le-2\)
Các câu sau tương tự.
x^2-6x+10
=(x^2-2.3.x+3^2)+1
=(x-3)^2+1
Có(x-3)^2\(\ge\)0
\(\Rightarrow\)(x-3)^2+1\(\ge\)1.Dấu "=" xảy ra\(\Leftrightarrow\)(x-3)^2=0
\(\Leftrightarrow\)x-3=0
\(\Leftrightarrow\)x=3
Vậy A min=1\(\Leftrightarrow\)x=3
Hok tốt ^_<
a) => M = -(X2+8X-5)
<=> M=-( X2+2xXx4+42-42-5)
<=> M=-[(X+4)2-21]
=> M=21-(x+4)2 =< 21
vậy MAX M= 21 khi X+4 =0 => x=-4
các bài còn lại tương tự ~~~
a, \(M=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+2.x.4+16-21\right)\)
\(=-\left(x+4\right)^2+21\)
\(\Rightarrow M\le21\)
Dấu ''='' xảy ra \(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy giá trị lớn nhất của M là 21 khi x = -4
b, \(N=-3x\left(x+3\right)-7\)
\(=-3x^2-9x-7\)
\(=-3\left(x^2+3x+\frac{7}{3}\right)\)
\(=-3\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{12}\right)\)
\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow N\le\frac{-1}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy giá trị lớn nhất của N là \(\frac{-1}{4}\Leftrightarrow x=\frac{-3}{2}\)
c,\(P=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-2.x.2+4-7\right)\)
\(=-\left(x-2\right)^2+7\)
\(\Rightarrow P\le7\)
Dấu ''='' xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy giá trị lớn nhất của P là 7 khi x = 2
d, \(E=9x-3x^2\)
\(=-3\left(x^2-3x\right)\)
\(=-3\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
\(\Rightarrow E\le\frac{27}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy giá trị lớn nhất của E là \(\frac{27}{4}\Leftrightarrow x=\frac{3}{2}\)
Yêu cầu đề bài của bạn
A = - \(x^2\) - 4\(x\)
A = -(\(x^2\) + 4\(x\) + 4) + 4
A = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ -(\(x\) + 2)2 ≤ 0 ⇒ - (\(x\) + 2)2 + 4 ≤ 4
⇒ Amax = 4 ⇔ \(x\) + 2 = 0 ⇔ \(x\) = -2
Kết luận giá trị lớn nhất của A là 4 xảy ra khi \(x\) = -2
B = - 9\(x^2\) + 24\(x\) - 18
B = - (9\(x^2\) - 24\(x\) + 16) - 2
B = -(3\(x\) - 4)2 - 2
(3\(x\) - 4)2 ≥ 0 ⇒ -(3\(x\) - 4)2 ≤ 0 ⇒ -(3\(x\) - 4)2 - 2 ≤ -2
Bmax = -2 ⇔ 3\(x\) - 4 = 0 ⇔ \(x\) = \(\dfrac{4}{3}\)
Kết luận giá trị lớn nhất của B là: -2 xảy ra khi \(x\) = \(\dfrac{4}{3}\)