Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
A = x2 - 4x + 1
A = ( x2 - 4x + 4 ) - 3
A = ( x - 2 )2 - 3
( x - 2 )2 ≥ 0 ∀ x => ( x - 2 )2 - 3 ≥ -3
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinA = -3 <=> x = 2
B = 4x2 + 4x + 11
B = 4( x2 + x + 1/4 ) + 10
B = 4( x + 1/2 )2 + 10
4( x + 1/2 )2 ≥ 0 ∀ x => 4( x + 1/2 )2 + 10 ≥ 10
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 )
C = [ ( x - 1 )( x + 6 ) ][ ( x + 3 )( x + 2 ) ]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = ( x2 + 5x )2 - 62 = ( x2 + 5x )2 - 36
( x2 + 5x )2 ≥ 0 ∀ x => ( x2 + 5x )2 - 36 ≥ -36
Đẳng thức xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
=> MinC = -36 <=> x = 0 hoặc x = -5
D = 5 - 8x - x2
D = -( x2 + 8x + 16 ) + 21
D = -( x + 4 )2 + 21
-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 21 ≤ 21
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxD = 21 <=> x = -4
E = 4x - x2 + 1
E = -( x2 - 4x + 4 ) + 5
E = -( x - 2 )2 + 5
-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 5 ≤ 5
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxE = 5 <=> x = 2
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
nhiều quá bạn ạ
hay bạn tìm hiểu cách thức chung làm dạng bài tìm GTNN chứ như thế này thì làm lâu lắm
mik chỉ tìm hiểu đc đến câu I còn lại mik k hiểu lắm, bn có lm đc k, giúp mik vs
M = ( x + 4 )( x - 4 ) - 2x( 3 + x ) + ( x + 3 )2
= x2 - 16 - 6x - 2x2 + x2 + 6x + 9
= -7 ( đpcm )
N = ( x2 + 4 )( x + 2 )( x - 2 ) - ( x2 + 3 )( x2 - 3 )
= ( x2 + 4 )( x2 - 4 ) - ( x4 - 9 )
= x4 - 16 - x4 + 9
= -7 ( đpcm )
P = ( 3x - 2 )( 9x2 + 6x + 4 ) - 3( 9x3 - 2 )
= 27x3 - 8 - 27x3 + 6
= -2 ( đpcm )
Q = ( 3x + 2 )2 + ( 6x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 12x + 4 + 12x - 18x2 + 20 - 30x + 4 - 12x + 9x2
= -18x + 28 ( có phụ thuộc vào biến )
tìm gí trị nhỏ nhất
Ta có \(A=x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)\(\Rightarrow A\ge\frac{3}{4}\)
Dấu"=" xảy ra khi và chỉ khi \(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là \(\frac{3}{4}\) tại \(x=-\frac{1}{2}\)
Ta có \(B=4x^2-3x+2=4x^2-2.2x.\frac{3}{4}+\frac{9}{16}+\frac{23}{16}=\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\)
Vì \(\left(2x-\frac{3}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\ge\frac{23}{16}\Rightarrow B\ge\frac{23}{16}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(2x-\frac{3}{4}\right)^2=0\Leftrightarrow2x-\frac{3}{4}=0\Leftrightarrow2x=\frac{3}{4}\Leftrightarrow x=\frac{3}{8}\)
Vậy giá trị nhhor nhất của B là \(\frac{23}{16}\)tại \(x=\frac{3}{8}\)
Ta có \(C=3x^2+x-1=3\left(x^2+\frac{1}{3}x-\frac{1}{3}\right)=3\left(x^2+2.\frac{1}{6}x+\frac{1}{36}-\frac{13}{36}\right)=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\)
Vì \(\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{6}=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy giá trị nhỏ nhất của C là \(-\frac{13}{12}\)tại \(x=-\frac{1}{6}\)
tìm giá trị lớn nhất
Ta có \(A=x+1-x^2=-\left(x^2-x-1\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x+\frac{1}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy giá trị lớn nhất của A là \(\frac{5}{4}\)tại \(x=-\frac{1}{2}\)
a) => M = -(X2+8X-5)
<=> M=-( X2+2xXx4+42-42-5)
<=> M=-[(X+4)2-21]
=> M=21-(x+4)2 =< 21
vậy MAX M= 21 khi X+4 =0 => x=-4
các bài còn lại tương tự ~~~
a, \(M=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+2.x.4+16-21\right)\)
\(=-\left(x+4\right)^2+21\)
\(\Rightarrow M\le21\)
Dấu ''='' xảy ra \(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy giá trị lớn nhất của M là 21 khi x = -4
b, \(N=-3x\left(x+3\right)-7\)
\(=-3x^2-9x-7\)
\(=-3\left(x^2+3x+\frac{7}{3}\right)\)
\(=-3\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{12}\right)\)
\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow N\le\frac{-1}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy giá trị lớn nhất của N là \(\frac{-1}{4}\Leftrightarrow x=\frac{-3}{2}\)
c,\(P=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-2.x.2+4-7\right)\)
\(=-\left(x-2\right)^2+7\)
\(\Rightarrow P\le7\)
Dấu ''='' xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy giá trị lớn nhất của P là 7 khi x = 2
d, \(E=9x-3x^2\)
\(=-3\left(x^2-3x\right)\)
\(=-3\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
\(\Rightarrow E\le\frac{27}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy giá trị lớn nhất của E là \(\frac{27}{4}\Leftrightarrow x=\frac{3}{2}\)