Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECF có
AF//EC
AF=EC
Do đó: AECF là hình bình hành
b: Xét tứ giác ABEF có
AF//BE
AF=BE
Do đó: ABEF là hình bình hành
mà AF=AB
nên ABEF là hình thoi
Suy ra: AE\(\perp\)BF
c: \(\widehat{ABD}=180^0-60^0=120^0\)
e: Xét tứ giác FDCE có
FD//CE
FD=CE
Do đó: FDCE là hình bình hành
ma FD=CD
nên FDCE là hình thoi
=>FC là đường trung trực của DE
hay E và D đối xứng nhau qua FC
a/ Theo bài ra: \(x^2+y^2=6;xy=1\)
=> \(x^2+y^2+2xy=8\)
=> \(\left(x+y\right)^2=8\)
=> \(x+y=\sqrt{8}\)
b/ Theo bài ra: \(x^2+y^2=14;xy=1\)
=>\(x^2+y^2-2xy=12\)
=> \(\left(x-y\right)^2=12\)
=> \(x-y=\sqrt{12}\)
c/ Theo bài ra: \(a^2+b^2=116;ab=40\)
=> \(\left(a^2+b^2\right)^2=116^2;a^2b^2=1600\)
=> \(a^4+b^4+2a^2b^2=116^2\)
=> \(a^4-2a^2b^2+b^4+4a^2b^2=13456\)
=> \(a^4-2a^2b^2+b^4=7056\)
Bài 2 nhìn tổng quát thì tahays tiwur A đến K đều dung hđt số 3
còn L thì đặt dyas âm trước 3 hạng tử đầu dung hđt 1 rồi áp dụng hđt 3
m tương tự đặt dấu âm làm nhân tử chung 3 hạng tử sau rồi áp dụng hđt số 2 sung hđt số 3
.hết
Bài 1:
\(A=3-x^2\)
Với mọi giá trị của x ta có:
\(x^2\ge0\Rightarrow3-x^2\le3\)
Vậy MAx A = 3
Để A = 3 thì \(x=0\)
\(B=4x-x^2+3=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\)
Với mọi giá trị của x ta có:
\(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2+7\le7\)
Vậy Max B = 7
Để B = 7 thì \(x-2=0\Rightarrow x=2\)
\(C=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Với mọi giá trị của x ta có:
\(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\dfrac{1}{2}\right)^2\le0\)
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Vậy Max C = \(\dfrac{1}{4}\)
Để C = \(\dfrac{1}{4}\) thì \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(D=\dfrac{1}{x^2+2x+3}=\dfrac{1}{\left(x+1\right)^2+2}\)
Với mọi giá trị của x ta có:
\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+2\ge2\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)^2+2}\le\dfrac{1}{2}\)
Vậy Max D= \(\dfrac{1}{2}\)
Để \(D=\dfrac{1}{2}\) thì \(x+1=0\Rightarrow x=-1\)
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2014}{2015!}\)
\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)
\(=1-\frac{1}{2015!}< 1\left(đpcm\right)\)