Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)
\(=2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)
\(=2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)\)
\(=\left(2x-\sqrt{x+3}\right)\left(x-\sqrt{x+3}\right)\)
\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)
\(=2x^2-x\sqrt{x+3}-2x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)
\(=x\left(2x-\sqrt{x+3}\right)-\sqrt{x+3}\left(2x-\sqrt{x+3}\right)\)
\(=\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)\)
\(=\left(\sqrt{2x}\right)^2-\left(\sqrt{y}\right)^2\)
\(=\left(\sqrt{2x}-\sqrt{y}\right)\left(\sqrt{2x}+\sqrt{y}\right)\)
3\(x\) - y
= (\(\sqrt{3x}\))2 - (\(\sqrt{y}\))2
= (\(\sqrt{3x}\) - \(\sqrt{y}\)).(\(\sqrt{3x}\) + \(\sqrt{y}\))
\(\frac{x^2-5}{3x}-\frac{2}{3}=\frac{x^2-2x-5}{3x}=\frac{\left(x-1+\sqrt{6}\right)\left(x-1-\sqrt{6}\right)}{3x}\)
\(3x-7\sqrt{x}-20\)
\(=3x-12\sqrt{x}+5\sqrt{x}-20\)
\(=\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)\)