Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^2-8x+15\)
\(=x^2-3x-5x+15\)
\(=x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x-5\right)\)
b ) \(4x^8+1\)
\(=4x^8+1+4x^2-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)\)
a)xz-yz -x2 +2xy-y2=(xz-yz)-(x2-2xy+y2)=z(x-y)-(x-y)2=(x-y)(z-x+y)
b) x2+8x+15= (x2+3x)+(5x+15)=x(x+3)+5(x+3)=(x+3)(x+5)
c) x2-x-12=(x2-4x)+(3x-12)=x(x-4)+3(x-4)=(x-4)(x+3)
a) xz - yz - x2 + 2xy - y2
= (xz - yz) - (x2 - 2xy + y2)
= z (x - y) - (x - y)2
= z (x - y) - (x - y) (x - y)
= [z - (x - y)] (x - y)
= (z - x + y) (x - y)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= (x2 + 3x) + (5x + 15)
= x (x + 3) + 5 (x + 3)
= (x + 5) (x + 3)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= (x2 - 4x) + (3x - 12)
= x (x - 4) + 3 (x - 4)
= (x + 3) (x - 4)
#Học tốt!!!
~NTTH~
Ta có : x4 + 8x2 + 7x + 8
= x4 - x + 8x2 + 8x + 8
= x(x3 - 1) + 8(x2 + x + 1)
= x(x - 1)(x2 + x + 1) + 8(x2 + x + 1)
= (x2 - x)(x2 + x + 1) + 8(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 8)
Học tốt nhé !
\(A=x^3-x^2-8x+12\)
\(=x^3-2x^2+x^2-2x-6x+12\)
hay \(A=x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+6\right)\)
\(=\left(x+2\right)^2\left(x+3\right)\)
\(A=x^3-x^2-8x+12\)
\(=x^3-2x^2+x^2-2x-6x+12\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-6\right)\)
\(=\left(x-2\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(=\left(x-2\right)^2\left(x+3\right)\)
Chúc bạn học tốt.
haha lớp trưởng lớp tôi mà cux không làm đc câu này cơ đấy.....
a) \(x^2-25-4xy+4y^2\)
\(=\left(x^2-4xy+4y^2\right)-25\)
\(=\left(x-2y\right)^2-5^2\)
\(=\left(x-2y-5\right)\left(x-2y+5\right)\)
b) \(x^2-8x+15\)
\(=x^2-3x-5x+15\)
\(=x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x-5\right)\)
a)\(x^2-25-4xy+4y^2\Leftrightarrow\left(x^2-4xy+4y^2\right)-25\)
\(\Leftrightarrow\left(x-2y\right)^2-5^2\)
\(\Leftrightarrow\left(x-2y-5\right)\left(x-2y+5\right)\)
b)\(x^2-8x+15\Leftrightarrow\left(x-3\right)\left(x-5\right)\)
Bài này giải hệ số bất định.
Ta có:
\(x^4-8x+63\)
\(=x^4+4x^3-4x^3+9x^2-16x^2+7x^2-36x+28x+63\)
\(=\left(x^4-4x^3+7x^2\right)+\left(4x^3-16x^2+28x\right)+\left(9x^2-36x+63\right)\)
\(=x^2\left(x^2-4x+7\right)+4x\left(x^2-4x+7\right)+9\left(x^2-4x+7\right)\)
\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)
\(x^2-8x+15\)
\(=x^2-3x-5x+15\)
\(=x\left(x-3\right)-5 \left(x-3\right)\)
\(=\left(x-5\right)\left(x-3\right)\)
\(x^2-8x+15\)
\(=\left(x^2-3x\right)-\left(5x-15\right)\)
\(=x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x-5\right)\)
Tham khảo nhé~