\(\frac{12n+1}{30n+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021
Gọi d là UCLN (12n+1;12n+3), d thuộc N sao -->12n+1 = 5(12n+1) = 60n+5chia hết cho d 30n+2=2(30n+2)=60n+4 chia hết cho d ->(60n+5)-(60n+4) chia hết cho d <=> 1 chia hết cho d => d=1=> ps 12n+1/30n+2 tối giản
8 tháng 4 2018

gọi d là UCLN(12N+1;30N+2) d thuộc N*

ta có 12n+1 chia hết cho d ; 30n+2 chia hết cho d

=> 60n+5 chia hết cho d / 60n+4 chia hết cho d

=> ( 60n+5) - (60n+4) chia hết cho d

=> 60n +5 - 60n -4 chia hết cho d

=> (60n-60n) + (5-4) chia hết cho d

 => 1chia hết cho d   =>    d=1

=> UCLN(12n+1;30n+2) = 1

Chứng tỏ phân số 12n+1 / 30n+2 là phân số tối giản

Vậy....(đpcm)

5 tháng 2 2016

Gọi d là ƯCLN(12n+1;30n+2)

=>12n+1 \(\div\) d => 5(12n+1) \(\div\) d => 60n+5 \(\div\) d

và 30n + 2 \(\div\) d => 2(30n+2) \(\div\) => 60n+4 \(\div\) d

=> 60n+5-(60n+4) \(\div\) d

=> 60n+5-60n-4 \(\div\) d

=> 1 \(\div\) d

=> d=1

=> ƯCLN(12n+1;30n+2)=1

=> \(\frac{12n+1}{30n+2}\) là phân số tối giản

5 tháng 2 2016

Gọi ƯCLN( 12n+1; 30n+2 ) = d

⇒ 12n+1  5.( 12n+1 ) ⋮ d

⇒ 30n+2 ⋮ ⇒ 2.( 30n+2 ) ⋮ d

[2.( 30n+2 ) -  5.( 12n+1 ) ] ⋮ d

⇒ [ ( 60n+4 ) - ( 60n+5 ) ] ⋮ d

⇒ ⋮ ⇒ d = + 1

Vì ƯC( 12n+1; 30n+2 ) = + 1 ⇒ \(\frac{12n+1}{30n+2}\) là p/s tối giản ( đpcm )

 

16 tháng 3 2018

Gọi ƯCLN(12n+1,30n+2)=d.

=> 12n+1⁞d; 30n+2⁞d

=> 5(12n+1)⁞d; 2(30n+2)⁞d

   60n+5⁞d, 60n+4⁞d

=> (60n+5)-(60n+4)⁞d

    60n+5-60n-4⁞d

     1⁞d

=> d\(\inƯ\left(1\right)=1\)

Vậy ƯCLN(12n+1, 30n+2)=1.

Vậy với mọi n thì \(\frac{12n+1}{30n+2}\)là phân số tối giản.

16 tháng 3 2018

n= 1

k bt đúng hay k

=)))))))))

27 tháng 2 2017

Đặt ƯCLN(3n-2;4n-3)=d => 3n-2 chia hết cho d và 4n-3 chia hết cho d

=>4(3n-2) chia hết cho d và 3(4n-3) chia hết cho d 

=>12n-8 chia hết cho d và 12n-9 chia hết cho d 

=>(12n-8)-(12n-9) chia hết cho d 

=>1 chia hết cho d 

=>d=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{3n-2}{4n-3}\) tối giản

27 tháng 2 2017

Đặt ƯCLN(4n+1;6n+1)=m => 4n+1 chia hết cho m và 6n+1 chia hết cho m

=>3(4n+1) chia hết cho m và 2(6n+1) chia hết cho m

=>12n+3 chia hết cho m và 12n+2 chia hết cho m 

=>(12n+3)-(12n+2) chia hết cho m

=>1 chia hết cho m

=>m=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{4n+1}{6n+1}\) tối giản

16 tháng 5 2017

a. Để a tối giản thì UCLN của 12n+1 và 30n+2 là 1
Gọi UCLN của 12n+1 và 30n+2 là d
Ta có
\(12n+1⋮d;30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=\left(60n+5\right)-\left(60n+4\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy A là phân số tối giản

b
Gọi UCLN của 14n+17 và 21n+25 là d
Ta có
\(14n+17⋮d;21n+25⋮d\)
\(\Rightarrow3\left(14n+17\right)-2\left(21n+25\right)=\left(42n+51\right)-\left(42n+50\right)=1⋮d\)
\(\Rightarrow d=1\)
vậy B là phân số tối giản
 

16 tháng 5 2017

Từ đây mik rút ra công thức tổng quát nhé!
Nếu chỉ cần tìm được các số tự nhiên a, b, c, e, g sao cho
\(\left|a\left(bn+c\right)-d\left(en+g\right)=1\right|\)
Tức là \(ab=de;\left|ac-dg\right|=1\)Thì 
Chúng ta sẽ có \(\frac{bn+c}{en+g}\)\(\frac{en+g}{bn+c}\)là các phân số tối giản

10 tháng 1 2016

Gọi d là UCLN (12n+1 và 30n+2)

=>12n+1 chia hết cho d và 30n+2 chia hết cho d

=>5.(12n+1)=60n+5 chia hết cho d và 2.(30n+2)=60n+4 chia hết cho d

=>(60n+5)-(60n+4)=60n+5-60n-4=1 chia hết cho d

=> d là 1 

=>12n+1/30n+2 tối giản

10 tháng 1 2016

Đặt ƯCLN(12n+1, 30n+2) = d

=> (12n+1)-(30n+2) chia hết cho d

=> 5.(12n+1)-2.(30n+2) chia hết cho d

=> 60n+5-60n-4 chia hết cho d

=> 1 chia hết cho d

=> d = 1 

=> ƯCLN (12n+1, 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản (đpcm).

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5(12n + 1) chia hết cho d  , 2(30n + 2) chia hết cho d 

<=> 60n + 5 chia hết cho d  , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 

Vậy ƯCLN của 12n + 1 và 30n + 2 = 1

Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d

<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d

<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN của 12n +1 và 30n +2 = 1

Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)  .

Chúc bạn học tốt !