Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ucln là a
ta co:12n+1 chia het cho a
30n+2chia het cho a
=>60n+5 chia het cho a
60n+4 chia het cho a
=>60n+5-60n+4
=1
vì trong 2 số,cả hai chia hết cho 1=>đo la pstg
tk cho mk nhé
mk hoc cung voi cau ne
mk la hoang anh hoc lop 6B thcs duong xa
thì nó đã là 1 phân số tối giản rồi thì chứng minh làm gì nữa
Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> phân số 12n + 1/30n + 2 là phân số tối giản
Gọi d là ƯC(12n+1,30n+2). Ta có :
( 12n + 1 ) d => 5.( 12n + 1) d hay ( 30n + 5 ) d
( 30n + 2 ) d => 2 . ( 30n + 2 ) d hay ( 30n + 4 ) d
=> ( 30n + 5 ) - ( 30n + 4 ) = 1
=> d = 1
Vậy : là phân số tối giản
Ta có : \(\frac{12n+1}{30n+2}\)là phân số tối giản <=> ƯCLN(12n + 1; 30n + 2) \(\in\) {1; -1}
Gọi ƯCLN(12n + 1; 30n + 2) là d
=> \(12n+1⋮d\) => \(5\left(12n+1\right)⋮d\) => \(60n+5⋮d\)
\(30n+2⋮d\) \(2\left(30n+2\right)⋮d\) \(60n+4⋮d\)
=> (60n + 5) - (60n + 4) = 1 \(⋮\)d => d \(\in\){1; -1}
Vậy \(\frac{12n+1}{30n+2}\)tối giản
a)
Gọi d là ước chung của tử và mẫu
=> 12n + 1 chia hết cho d 60n + 5 chia hết cho d
=>
30n +2 chia hết cho d 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1 => ( đpcm )
Câu a) làm rồi mình làm câu b) nhé
\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Gọi d là WCLN của 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d và 30n + 1 chia hết d
=> 5(12n+1 ) chia hết d và 2( 30n + 1) chia hết d
=> 60n+5 chia hết cho d và 60n + 4 chai hết cho d
=> (60n+5)-(60+4) chia hết cho d => 1 chia hết d
=> d=1
Vạy mội p/s có dạng 12n+1/30n+2 đều là p/s tối giản
De 12n+1/30n+2la phan so toi gian thi 12n+1 va 30n+2 co UCLN la 1
Goi d la UCLN(12n+1;30n+2)
12n+1 chia het cho d ; 30n+2 chia het cho d
=>(30n+2)-(12n+1) chia het cho d
=30n+2-12n-1 chia het cho d
=(30n-12n)+(2-1) chia het cho d
8n chia het cho d la 1 chia het cho d
=> n=8n thi 12n+1/30n+2 la phan so toi gian
đặt (12n+1,30n+2)=d
=>12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d
=>30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d
ta có : 5*(12n+1)-2*(30n+2) chia hết cho d
= 1 chia hết cho d
=> d=1
=>(12n+1,30n+2)=1
=>đpcm
gọi d là ucln(12n+1;30n+2)
ta có : 12n+1 chia hết d
⇒60n + 5⋮d (1)
mà 30n+2⋮ d
⇒60n + 4 ⋮ d (2)
từ (1) và (2) ta có:
⇒60n+5 -(60n+4)⋮d
⇒60n+5-60n-4⋮d
⇒1⋮d⇒d=1
vì ucln(12n+1;30n+2)=1
⇒12n+1/30n+2 là phân số tối giản
vậy 12n+1/30n+2 là phân số tối giản