\(x^2+\left(\frac{x}{x+1}\right)^2=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Cách giải giống câu này nè bạn: 903926

ĐK: x \(\ne\) -1

Đặt y = x+1

=> x = y - 1

PT tương đương

(y-1)2\(\frac{\left(y-1\right)^2}{y^2}\)= 1

<=> y2 - 2y + 1 + 1 - \(\frac{2}{y}\)\(\frac{1}{y^2}\)= 1

<=> y2 + \(\frac{1}{y^2}\) - 2(y + \(\frac{1}{y}\)) = -1

Đặt z = y + \(\frac{1}{y}\)  (|z| >= 2)

=> z = y2 + \(\frac{1}{y^2}\) + 2

PT tương đương

z2 - 2 - 2z = -1

<=> z2 - 2z - 1 = 0

<=>

z = \(\frac{2-\sqrt{8}}{2}\)(loại vì |z| < 2)

hoặc z = \(\frac{2+\sqrt{8}}{2}\)= 1 +\(\sqrt{2}\)

=> y + \(\frac{1}{y}\) = 1 + \(\sqrt{2}\)

=> y- (1 +\(\sqrt{2}\))y + 1 = 0

Giải PT bậc 2 này tìm được 2 nghiệm y.

=> 2 nghiệm x = y - 1.

D = 2\(\sqrt{2}\)-1 > 0

y = \(\frac{\sqrt{2}+1+\sqrt{2\sqrt{2}-1}}{2}\)

hoặc y = \(\frac{\sqrt{2}+1-\sqrt{2\sqrt{2}-1}}{2}\)

=> x = y - 1 = ... \(\approx\)0.883203505913526

Hoặc x = y - 1 = ... \(\approx\)-0.468989943540431

11 tháng 4 2017

\(x^2+\left(\frac{x}{x+1}\right)^2=1\) Điều kiện xác định \(x\ne-1\)
\(\Leftrightarrow x^2+\left(\frac{x}{x+1}\right)^2-2\frac{x^2}{x+1}+2\frac{x^2}{x+1}=1\)
\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+2\frac{x^2}{x+1}=1\)
Nhận xét \(x-\frac{x}{x+1}=\frac{x^2+x-x}{x+1}=\frac{x^2}{x+1}\)
Từ đó ta có: \(\left(x-\frac{x}{x+1}\right)^2+2\frac{x^2}{x+1}=1\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+2\left(x-\frac{x}{x+1}\right)=1\)
Đặt \(t=x-\frac{x}{x+1}\) ta có phương trình \(t^2+2t-1=0\Leftrightarrow\orbr{\begin{cases}t=1+\sqrt{2}\\t=1-\sqrt{2}\end{cases}}\)
Với \(t=1+\sqrt{2}\)ta có \(x-\frac{x}{x+1}=1+\sqrt{2}\)\(\Leftrightarrow x^2-\left(1+\sqrt{2}\right)x-\left(1+\sqrt{2}\right)=0\)
                                                                                           \(\Leftrightarrow\orbr{\begin{cases}x_1=\frac{1+\sqrt{2}+\sqrt{7+6\sqrt{2}}}{2}\\x_1=\frac{1+\sqrt{2}-\sqrt{7+6\sqrt{2}}}{2}\end{cases}}\)
  Với \(t=1-\sqrt{2}\) ta có \(x-\frac{x}{x+1}=1-\sqrt{2}\)\(\Leftrightarrow x^2-\left(1-\sqrt{2}\right)x-\left(1-\sqrt{2}\right)=0\)( vô nghiệm).
                                                                                             

23 tháng 7 2016

2) đặt \(x^2+x+1=t\left(t>0\right)\)   ==> \(x^2+x+2=t+1\)

nên pt trên trở thành 

\(\left(\frac{1}{t}\right)^2+\left(\frac{1}{t+1}\right)^2=\frac{13}{36}\)

<=> \(\frac{1}{t^2}+\frac{1}{t^2+2t+1}=\frac{13}{36}\)

<=> \(13t^4+26t^3-59t^2-72t-36=0\)

<=> \(13t^4-26t^3+52t^3-104t^2+45t^2-90t+18t-36=0\)

<=> \(13t^3\left(t-2\right)+52t^2\left(t-2\right)+45t\left(t-2\right)+18\left(t-2\right)=0\)

<=>\(\left(t-2\right)\left(13t^3+52t^2+45t+18\right)=0\)

<=> \(\left(t-2\right)\left(t+3\right)\left(13t^2+13t+6\right)=0\)

<=> \(\orbr{\begin{cases}t=2\left(tmdk\right)\\t=-3\left(ktmdk\right)\end{cases}}\)

đến đây bạn thay vào làm nốt nhá

23 tháng 7 2016

1.

Đặt \(a=\frac{x\left(5-x\right)}{x+1};b=x+\frac{5-x}{x+1}\)

Ta cần giải pt : \(a.b=6\)(1)

Ta có: \(a+b=\frac{x\left(5-x\right)}{x+1}+x+\frac{5-x}{x+1}=\frac{5x-x^2+x^2+x+5-x}{x+1}=5\)

\(\Rightarrow a=5-b\)

Thế \(a=5-b\)vào (1)

\(\Rightarrow\left(5-b\right)b=6\)

\(\Leftrightarrow b^2-5b+6=0\)

\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b=2\\b=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x+\frac{5-x}{x+1}=2\\x+\frac{5-x}{x+1}=3\end{cases}}}\)

Giải 2 pt trên, ta có nghiệm : \(x=1\)

          

30 tháng 3 2018

đặt \(x-\frac{1}{x}=a\)=>\(a^2=\left(x-\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}-2\)=> \(x^2+\frac{1}{x^2}=a^2-2\)thay vào pt đc

2a+a^2-2=1

<=>a^2+2a-3=0

từ đó tìm đc a rồi tìm đc x 

28 tháng 9 2017

\(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)

\(\Leftrightarrow\frac{x^2\left(x+1\right)^2+x^2\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2\left[\left(x+1\right)^2-\left(x-1\right)^2\right]}{\left[\left(x-1\right)\left(x+1\right)\right]^2}=\frac{10}{9}\)

\(\Leftrightarrow\frac{x^2\left(x+1-x+1\right)\left(x+1+x-1\right)}{\left(x^2-1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2.2.2x}{x^4-2x^2+1}=\frac{10}{9}\)

\(\Leftrightarrow36x^3=10x^4-20x^2+10\Leftrightarrow18x^3=5x^4-10x^2+5\Leftrightarrow5x^4-18x^3-10x^2\)+5=0

đến đây tự giải tiếp

28 tháng 9 2017

ĐK:\(x\ne1;x\ne-1\)

\(pt\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)

\(\Leftrightarrow\frac{9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2}{9\left(x-1\right)^2\left(x+1\right)^2}=0\)

\(\Leftrightarrow9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2=0\)

\(\Leftrightarrow9x^4+18x^3+9x^2+9x^4-18x^3+9x^2-10x^4+20x^2-10=0\)

\(\Leftrightarrow8x^4+38x^2-10=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x^2=5\left(l\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

18 tháng 5 2017

Câu 1/

\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\left(1\right)\\3xy-x-y=1\left(2\right)\end{cases}}\)

Xét PT (2) ta có:

\(\left(2\right)\Leftrightarrow3xy-y=1+x\)

\(\Leftrightarrow y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow y+1=\frac{4x}{3x-1}\)

\(\Leftrightarrow\frac{x}{y+1}=\frac{3x-1}{4}\left(3\right)\)

Ta lại có:

\(y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow\frac{y}{x+1}=\frac{1}{3x-1}\left(4\right)\)

Từ PT (1) ta có

\(\left(1\right)\Leftrightarrow\left(\frac{3x-1}{4}\right)^2+\left(\frac{1}{3x-1}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow9x^4-12x^3-2x^2+4x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(3x+1\right)^2=0\)

Làm tiếp nhé

18 tháng 5 2017

Câu 2/

a/ \(x^2-1=3\sqrt{3x+1}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(3\sqrt{3x+1}\right)^2\)

\(\Leftrightarrow x^4-2x^2-27x-8=0\)

\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+3x+8\right)=0\)

Tới đây thì đơn giản rồi nhé

b/ \(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)

Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\\\sqrt{2+x}=b\end{cases}\left(a,b\ge0\right)}\)

Thì ta có:

\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-2ab=4\\\left(a+b\right)+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=2\\ab=0\end{cases}}\) hoặc \(\hept{\begin{cases}a+b=-4\\ab=6\end{cases}\left(l\right)}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}+\sqrt{2+x}=2\\\sqrt{4-x^2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

PS: Điều kiện xác định bạn tự làm nhé

31 tháng 3 2017

\(\frac{1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{\left(x+1\right)2}{4\left(x+1\right)\left(x-1\right)}+\frac{3\cdot4}{4\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)\left(x-1\right)}{4\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow2\left(x+1\right)+12=x^2-1\)

\(\Leftrightarrow2x+2+12-x^2+1=0\)

\(2x-x^2+15=0\Leftrightarrow16-\left(x-1\right)^2=0\Leftrightarrow\left(4-x+1\right)\left(4+x-1\right)=0\Leftrightarrow\left(5-x\right)\left(3+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5-x=0\\3+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)

11 tháng 12 2017

Đặt \(x^2+x+1=a\)

\(pt\Leftrightarrow\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{5}{4}.\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{a+1}\right)^2+\frac{2}{a\left(a+1\right)}-\frac{5}{4}=0\)

\(\Leftrightarrow\left(\frac{1}{a\left(a+1\right)}\right)^2+\frac{2}{a\left(a+1\right)}-\frac{5}{4}=0\)

đặt \(\frac{1}{a\left(a+1\right)}=b\)

\(\Leftrightarrow b^2+2b-\frac{5}{4}=0\Leftrightarrow4b^2+8b-5=0\)

\(\left(2b-1\right)\left(2b+5\right)=0.\)

đến đây tự full đi.