\(\frac{1}{2\left(x-1\right)}\)+\(\frac{3}{x^2-1}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

\(\frac{1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{\left(x+1\right)2}{4\left(x+1\right)\left(x-1\right)}+\frac{3\cdot4}{4\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)\left(x-1\right)}{4\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow2\left(x+1\right)+12=x^2-1\)

\(\Leftrightarrow2x+2+12-x^2+1=0\)

\(2x-x^2+15=0\Leftrightarrow16-\left(x-1\right)^2=0\Leftrightarrow\left(4-x+1\right)\left(4+x-1\right)=0\Leftrightarrow\left(5-x\right)\left(3+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5-x=0\\3+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)

11 tháng 10 2020

b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)

pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)

Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)

Vậy nghiệm của hệ pt là(x;y)=(2;2)

a,x4-10x2+9=0

=>(x-1)(x3+x2-9x-9)=0

=> (x-1)(x+1)(x-3)(x+3)=0

=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)

Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}

16 tháng 4 2019

trả lời

h bn tính theo đenta là ra thôi mà

hok tốt

19 tháng 6 2017

a/ Căn xác định với \(2\le x< 3\) ta có \(\frac{\left(x-2\right)^2}{3-x}+\frac{x^2+1}{x-3}=0\)

<=> \(\frac{\left(x-2\right)^2}{3-x}-\frac{x^2+1}{3-x}=0\)<=> \(^{x^2-4x+4-x^2-1=0}\)<=> x = 3/4 ( Không TM ) Vậy PTVN 

19 tháng 6 2017

Bài 2:

*)GTNN: Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(A=\sqrt{x+3}+\sqrt{5-x}\)

\(\ge\sqrt{x+3+5-x}=\sqrt{8}\)

Đẳng thức xảy ra khi \(-3\le x\le5\)

*)GTLN:Áp dụng BĐT Cauchy-Schwarz ta có:

\(A^2=\left(\sqrt{x+3}+\sqrt{5-x}\right)^2\)

\(\le\left(1+1\right)\left(x+3+5-x\right)\)

\(=2\cdot8=16\)

\(\Rightarrow A^2\le16\Rightarrow A\le4\)

Đẳng thức xảy ra khi \(x=1\)

11 tháng 6 2017

xem lại đề câu 1đi nhé 

11 tháng 6 2017

b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)

c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)

\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

20 tháng 8 2019

chịu thua