K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

\(\frac{1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{\left(x+1\right)2}{4\left(x+1\right)\left(x-1\right)}+\frac{3\cdot4}{4\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)\left(x-1\right)}{4\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow2\left(x+1\right)+12=x^2-1\)

\(\Leftrightarrow2x+2+12-x^2+1=0\)

\(2x-x^2+15=0\Leftrightarrow16-\left(x-1\right)^2=0\Leftrightarrow\left(4-x+1\right)\left(4+x-1\right)=0\Leftrightarrow\left(5-x\right)\left(3+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5-x=0\\3+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)

24 tháng 7 2017

bạn tham khảo thêm cách này nha Shonogeki No Soma

ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)

Đặt  \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)

pt đã cho đc viết lại thành

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\)  (kí hiệu [..] mới đúng nha)

- TH1: a = -b hay  \(\left(x-1\right)^3=-x^3\)  \(\Leftrightarrow2x^3-3x^2+3x-1=0\)  \(\Leftrightarrow x=\frac{1}{2}\)  (Nhận)

- TH2: b = -c hay  \(\left(x+1\right)^3=-x^3\)  \(\Leftrightarrow2x^3+3x^2+3x+1=0\)  \(\Leftrightarrow x=-\frac{1}{2}\)  (Nhận)

- TH3: c = -a hay  \(\left(x+1\right)^3=-\left(x-1\right)^3\)  \(\Leftrightarrow x=0\)  (Loại)

KL:  \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)

24 tháng 7 2017

\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)

\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)

6 tháng 1 2019

Bạn chắc bạn viết đúng đề bài không?

19 tháng 8 2017

Câu 1/ 

x4 + (x - 1)(x2 - 2x + 2) = 0

\(\Leftrightarrow\)x4 + x3 - 3x2 + 4x - 2 = 0

\(\Leftrightarrow\)(x4 - x3 + x2) + (2x3 - 2x2 + 2x) + (- 2x2 + 2x + 2) = 0

\(\Leftrightarrow\)(x2 - x + 1)(x2 + 2x - 2) = 0

Tới đây tự làm tiếp nhé.

19 tháng 8 2017

Câu 2/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x-2}{x-4}=b\end{cases}}\)

Thì ta có pt

\(\Leftrightarrow\)a2 + ab - 12b2 = 0

\(\Leftrightarrow\)(a2 - 3ab) + (4ab - 12b2) = 0

\(\Leftrightarrow\)(a - 3b)(a + 4b) = 0

Tự làm phần còn lại nhé.

11 tháng 12 2017

Đặt \(x^2+x+1=a\)

\(pt\Leftrightarrow\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{5}{4}.\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{a+1}\right)^2+\frac{2}{a\left(a+1\right)}-\frac{5}{4}=0\)

\(\Leftrightarrow\left(\frac{1}{a\left(a+1\right)}\right)^2+\frac{2}{a\left(a+1\right)}-\frac{5}{4}=0\)

đặt \(\frac{1}{a\left(a+1\right)}=b\)

\(\Leftrightarrow b^2+2b-\frac{5}{4}=0\Leftrightarrow4b^2+8b-5=0\)

\(\left(2b-1\right)\left(2b+5\right)=0.\)

đến đây tự full đi.

19 tháng 6 2018

\(\Rightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{2x^3}{2}+\frac{x^2}{2}+\frac{2x}{2}+\frac{1}{2}\)

\(\Rightarrow\sqrt{x^2+x+\frac{1}{2}-\frac{1}{4}}=\sqrt{x^2+x+\frac{1}{4}}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)

\(\Rightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=x+\frac{1}{2}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)

\(\Rightarrow x^3+\frac{x^2}{2}+x+\frac{1}{2}-x-\frac{1}{2}=x^3+\frac{x^2}{2}=0\Rightarrow\frac{2x^3+x^2}{2}=0\)

\(\Rightarrow2x^3+x^2=0\Rightarrow x^2\left(2x+1\right)=0\Rightarrow\hept{\begin{cases}x^2=0\Rightarrow x=0\\2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\end{cases}}\)

vậy x=0 và x=-1/2

12 tháng 5 2019

Ta có \(\left(x+2\right)\left(y+3\right)+\left(x+4\right)\left(y+1\right)=2xy+4x+6y+10=30\)

Đặt \(x+2=a,y+1=b\)

Ta có hệ mới

\(\hept{\begin{cases}\frac{1}{a\left(a+2\right)}+\frac{1}{b\left(b+2\right)}=\frac{2}{15}\left(1\right)\\a\left(b+2\right)+b\left(a+2\right)=30\left(2\right)\end{cases}}\)

Lấy (1).(2)

=>\(\frac{a}{b}+\frac{b}{a}+\frac{a+2}{b+2}+\frac{b+2}{a+2}=4\)

Nếu a,b khác dấu 

=> \(VT\le-4\)(loại)

Nếu a,b cùng dấu 

=> \(VT\ge4\)

Dấu bằng xảy ra khi a=b=3 hoặc a=b=-5

=> x=1,y=2 hoặc x=-7,y=-6 (thỏa mãn điều kiện xác định)

Vậy x=1,y=2 hoặc x=-7,y=-6

19 tháng 5 2019

bn nào giải thick cho mk đoạn cùng dấu và trái dấu với 

tại sao cùng dấu lại >=4

trái dấu lại<=4

và làm thế nào để tính a,b

20 tháng 10 2020

ĐK: \(x,y\ne0\)

Hệ pt tương đương với:

\(\hept{\begin{cases}\frac{2}{x}=2y^4-2x^4+3y^4+3x^4+10x^2y^2\\\frac{1}{y}=3y^4+3x^4-2y^4+2x^4+10x^2y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2=5y^4x+x^5+10x^3y^2\\1=5x^4y+y^5+10x^2y^3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2+1=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\\2-1=x^5-5x^4y+10x^3y^2-10x^2y^3+5xy^4-y^5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^5=3\\\left(x-y\right)^5=1\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=\sqrt[5]{3}\\x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1+\sqrt[5]{3}}{2}\\y=\frac{\sqrt[5]{3}-1}{2}\end{cases}}}\)