Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình:
\(\left(x^2+5x\right)^2+2x^2+10x=24\)
<=>\(\left(x^2+5x\right)^2+2\left(x^2+5x\right)-24=0\)
\(x^2+5x=t\left(t\ge0\right)\)
=>\(t^2+2t-24=0\)
=>t1=4(tm)
=>t2=-6(loại)
Với t1=4=>\(x^2+5x=4\)
=>\(x^2+5x-4=0\)
=>x1\(=\frac{-5+\sqrt{41}}{2}\)
=>x2=\(\frac{-5-\sqrt{41}}{2}\)
Vậy ....
(mấy cái tìm x bạn tự tìm đenta ra nha )
https://hoc24.vn/hoi-dap/question/707664.html
mk thấy câu này có bạn làm rồi đó bạn
Giải các phương trình và hệ phương trình sau:
a) x2 - 8x + 15 = 0.
Δ' = 42 - 15 = 1
↔ x = 4 + 1 = 5 hay x = 4 - 1 = 3
b) 2x2 - √2x - 2 = 0. (2)
Δ = 2 - 4(2)(-2) = 18
(2) ↔ x = (√2 + 3√2)/4 = √2 hay x = (√2 - 3√2)/4 = -√2/2
c) x4 - 5x2 - 6 = 0
Đặt u = x2 ≥ 0 pt thành:
u2 - 5u - 6 = 0 ↔ u = -1 (loại) hay u = 6
Do đó pt ↔ x2 = 6 ↔ x = ±√6.
Giải các phương trình và hệ phương trình:
a) x2 - \(2\sqrt{5}\)x + 5 = 0
Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)
Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )
c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)
Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)
b: \(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-18\right)=-36\)
\(\Leftrightarrow\left(x^2+3x\right)^2-16\left(x^2+3x\right)=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x-16\right)=0\)
hay \(x\in\left\{0;-3;\dfrac{-3+\sqrt{73}}{2};\dfrac{-3-\sqrt{73}}{2}\right\}\)
c: \(\Leftrightarrow6x^4-18x^3-17x^3+51x^2+11x^2-33x-2x+6=0\)
\(\Rightarrow\left(x-3\right)\left(6x^3-17x^2+11x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x^3-12x^2-5x^2+10x+x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{3;2;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
d: \(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2+3x+1\right)=0\)
hay \(x\in\left\{1;\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)