Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>-2x^2+5x-2<0
=>2x^2-5x+2>0
=>(x-2)(2x-1)>0
=>x>2 hoặc x<1/2
b: =>5x^2-4x-12<0
=>5x^2-10x+6x-12<0
=>(x-2)(5x+6)<0
=>-6/5<x<2
c: =>-2x^2+3x-7>=0
=>2x^2-3x+7<=0(loại)
Giải phương trình:
\(\left(x^2+5x\right)^2+2x^2+10x=24\)
<=>\(\left(x^2+5x\right)^2+2\left(x^2+5x\right)-24=0\)
\(x^2+5x=t\left(t\ge0\right)\)
=>\(t^2+2t-24=0\)
=>t1=4(tm)
=>t2=-6(loại)
Với t1=4=>\(x^2+5x=4\)
=>\(x^2+5x-4=0\)
=>x1\(=\frac{-5+\sqrt{41}}{2}\)
=>x2=\(\frac{-5-\sqrt{41}}{2}\)
Vậy ....
(mấy cái tìm x bạn tự tìm đenta ra nha )
\(1.x^2+x-6>0\)
\(\Leftrightarrow x^2-x+6x-6>0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)>0\)
TH1:\(\hept{\begin{cases}x-1>0\\x+6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-6\end{cases}}\Leftrightarrow x>1}\)
TH2:\(\hept{\begin{cases}x-1< 0\\x+6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -6\end{cases}\Leftrightarrow}x< -6}\)
\(2.x^2+7x+12\le0\)
\(\Leftrightarrow x^2+3x+4x+12\le0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\le0\)
TH1:\(\hept{\begin{cases}x+3\ge0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\le-4\end{cases}\left(l\right)}}\)
TH2:\(\hept{\begin{cases}x+3\le0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-3\\x\ge-4\end{cases}\Leftrightarrow}-4\le x\le-3\left(n\right)}\)
\(3.\) \(\left(x-2\right)\left(x+6\right)\left(2x+5\right)\le0\)
TH1:\(\hept{\begin{cases}x-2\ge0\\x+6\ge0\\2x+5\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge-6\\x\le-\frac{5}{2}\end{cases}}}\left(l\right)\)
TH2:(loại)
TH3:\(\hept{\begin{cases}x-2\le0\\x+6\ge0\\2x+5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-6\\x\ge-\frac{5}{2}\end{cases}\Leftrightarrow}-\frac{5}{2}\le x\le2}\)
Và còn nhiều TH khác nữa tự tìm nhé
\(4.\) \(\left(1-x\right)\left(x^2-6\right)>0\)
TH1:\(\hept{\begin{cases}1-x>0\\x^2-6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>\sqrt{6}\end{cases}\left(l\right)}}\)
TH2:\(\hept{\begin{cases}1-x< 0\\x^2-6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x< \sqrt{6}\end{cases}\Leftrightarrow}1< x< \sqrt{6}\left(n\right)}\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-3x+2\ge0\\x^2-3x+2+x^2>2x\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-3x+2< 0\\-\left(x^2-3x+2\right)+x^2>2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\in(-\infty;1]\cup[2;+\infty)\\2x^2-5x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x\in\left(1;2\right)\\x-2>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\in(-\infty;1]\cup[2;+\infty)\\x\in(-\infty;\dfrac{1}{2})\cup(2;+\infty)\end{matrix}\right.\\\left\{{}\begin{matrix}x\in\left(1;2\right)\\x>2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x\in(-\infty;\dfrac{1}{2})\cup(2;+\infty)\)
https://hoc24.vn/hoi-dap/question/707664.html
mk thấy câu này có bạn làm rồi đó bạn