Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
1/
\(\Leftrightarrow2\left(x^2-5x+6\right)\left(x-4\right)>0\)
\(\Leftrightarrow2\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}x>4\\2< x< 3\end{matrix}\right.\)
2/ Không dịch được đề
bài 1 đề mình là bé hơn 0 mà bạn :))))))
dù sao cug cam on nhé
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2-4x+4-6x+3-2\left(x-2\right)\sqrt{2x-1}>0\)
\(\Leftrightarrow\left(x-2\right)^2-3\left(2x-1\right)-2\left(x-2\right)\sqrt{2x-1}>0\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab>0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)>0\)
Do \(b\ge0\) nên BPT\(\Leftrightarrow\left[{}\begin{matrix}a>3b\\a< -b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2>3\sqrt{2x-1}\\x-2< -\sqrt{2x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2>3\sqrt{2x-1}\\2-x>\sqrt{2x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+4>9\left(2x-1\right)\left(với.x\ge2\right)\\x^2-4x+4>2x-1\left(với.x< 2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-22x+13>0\\x^2-6x+5>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>11+6\sqrt{3}\\\frac{1}{2}\le x< 1\end{matrix}\right.\)
a/ - Với \(x\ge\frac{3}{5}\) BPT tương đương:
\(2x^2-5x+3< 0\Leftrightarrow1< x< \frac{3}{2}\)
- Với \(x< \frac{3}{5}\) BPT tương đương:
\(x^2+5x-3< 0\Leftrightarrow\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\)
Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}1< x< \frac{3}{2}\\\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\end{matrix}\right.\)
b/ -Với \(x< 8\) BPT vô nghiệm
- Với \(x\ge8\) hai vế ko âm, bình phương:
\(\left(x-8\right)^2>\left(x^2+3x-4\right)^2\)
\(\Leftrightarrow\left(x^2+3x-4\right)^2-\left(x-8\right)^2< 0\)
\(\Leftrightarrow\left(x^2+4x-12\right)\left(x^2-2x+4\right)< 0\)
\(\Leftrightarrow x^2+4x-12< 0\Rightarrow-6< x< 2\) (ktm)
Vậy BPT đã cho vô nghiệm