Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left(x+y\right)^2-xy=19\\\left(x+y\right)-xy=-1\end{matrix}\right.\) \(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=5\Rightarrow xy=6\\x+y=-4\Rightarrow xy=-3\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}x+y=5\\xy=6\end{matrix}\right.\) theo Viet đảo x;y là nghiệm:
\(t^2-5t+6=0\Rightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(2;3\right);\left(3;2\right)\)
- Với \(\left\{{}\begin{matrix}x+y=-4\\xy=-3\end{matrix}\right.\) theo Viet đảo x;y là nghiệm:
\(t^2+4t-3=0\Rightarrow\left[{}\begin{matrix}t=-2-\sqrt{7}\\t=-2+\sqrt{7}\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(-2-\sqrt{7};-2+\sqrt{7}\right);\left(-2+\sqrt{7};-2-\sqrt{7}\right)\)
\(\left\{{}\begin{matrix}x^2+xy+y=19\left(1\right)\\x-xy+y=-1\left(2\right)\end{matrix}\right.\)
Từ (2) <=> xy=x+y+1 thế vào (1) ta được
\(\left(x^2+y^2+2xy\right)-xy=19\) <=> \(\left(x+y\right)^2-\left(x+y\right)-20=0\) Đặt x+y=t ta đc
\(t^2-t-20=0\)\(\) <=> \(\left[{}\begin{matrix}t+4=0\\t-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-4\\t=5\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x+y=-4\\x+y=5\end{matrix}\right.\) thế vào (2) ta đc
\(\left[{}\begin{matrix}x+y=-4\\xy=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\pm\sqrt{7}\\x=-2\mp\sqrt{7}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x+y=5\\x-y=6\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\y=3\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
Bài 1:
Đặt 2x+1=a
Theo đề, ta có: \(\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}=3\)
=>3a^2(a+1)^2=a^2+2a+1+a^2
=>3a^2(a^2+2a+1)-2a^2-2a-1=0
=>3a^4+6a^3+a^2-2a-1=0
=>(a^2+a-1)(3a^2+3a+1)=0
=>\(a\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x+1\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x\in\left\{\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)
hay \(x\in\left\{\dfrac{-3+\sqrt{5}}{4};\dfrac{-3-\sqrt{5}}{4}\right\}\)
Ta có:
x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)
⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1
⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)
Đặt (x2+1;x+1)=d(x2+1;x+1)=d
⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d
⟹2⋮d⟹2⋮d
Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1
⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2
Từ đây dễ dàng suy ra x=0x=0
⟹y=0;y=−1⟹y=0;y=−1
Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)
\(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\left(1\right)\\y\left(x+y\right)=2x^2+7y+2\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow xy+y^2=2x^2+7y+2\left(3\right)\)
Thay \(\left(3\right)\) vào \(\left(1\right)\) ta có: \(\left(1\right)\Leftrightarrow x^2+2x^2+7y+2+1-4y=0\\ \Leftrightarrow x^2+y+1=0\\ \Leftrightarrow x^2+1=-y\)
Thay \(\left(4\right)\) vào \(\left(1\right)\): \(y^2+xy-5y=0\Leftrightarrow y\left(y+x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=5-x\end{matrix}\right.\)
Với y=0 thì \(x^2+1=0\) vô nghiệm
Với y=5-x thì \(x^2+1=x-5\Leftrightarrow x^2-x+6\) vô nghiệm
Vậy hpt vô nghiệm