K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có 

AD=CB

\(\widehat{D}=\widehat{B}\)

Do đó: ΔADH=ΔCBK

Suy ra: AH=CK

b: Xét tứ giác AHCK có

AK//CH

AH//CK

Do đó: AHCK là hình bình hành

13 tháng 4 2019

Ta có

a/3x^2y/3xy =3xy.x/3xy=x/2y^2

b/Ta có

x^2+2x/3x+6=x(x+2)/3(x+2)=x/3

c/Ta có

3x+3/3x = 3(x+1)/3x=x+1/x

-Vân đúng

12 tháng 10 2021

\(a,\) Vì ABCD là hbh nên \(AD=BC;AB//CD\Rightarrow\widehat{ADB}=\widehat{CBD}\left(so.le.trong\right)\)

Ta có \(\left\{{}\begin{matrix}\widehat{AED}=\widehat{CFB}\left(=90^0\right)\\\widehat{ADB}=\widehat{CBD}\left(cm.trên\right)\\AD=BC\left(cm.trên\right)\end{matrix}\right.\) nên \(\Delta AED=\Delta CFB\left(ch-gn\right)\)

\(\Rightarrow DE=BF\left(1\right)\)

Mà O là giao 2 đường chéo hbh ABCD nên O là trung điểm AC,BD

\(\Rightarrow OB=OD\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow OB-BF=OD-DE\Rightarrow OE=OF\)

\(b,\) Xét tg AECF có O là trung điểm AC,EF nên là hbh

18 tháng 3 2020

cái này mik chịu, mik mới có lớp 7

19 tháng 3 2020

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

9 tháng 12 2017

a) \(A=1+2+2^2+2^3+...+2^{100}\) \(B=2^{201}\)

\(2A=2\left(1+2+2^2+2^3+...+2^{100}\right)\)

\(2A=2+2^2+2^3+2^4+...+2^{201}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{201}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)

\(2A-A=2^{101}-1\)

\(A=2^{201}-1\)

Ta có 2201 > 2201 - 1 => B > A => 2201 > 1 + 2 + 22 + 23 +...+ 1100

9 tháng 12 2017

b) 2100 = 231 . 263 . 26 = 231 . (29)7 . (22)3 = 231 . 5127 . 43 (1)

1031 = 231 . 528 . 53 = 231 . (54)7 . 53 = 231 . 6257 . 53 (2)

Từ (1) , (2) => 231 . 5127 . 43 < 231 . 6257 . 53 ( vì 5127 < 6257 và 43 < 53 )

=> 2100 < 1031

18 tháng 8 2016

 abc=a+b+c => 1 = 1/ab + 1/bc + 1/ac 

3 = 1/a+1/b+1/c => 5 = 1/a^2 + 1/b^2 + 1/c^2 + 2/ab + 2/ac + 2/cb 

=> 5 = 1/a^2 + 1/b^2 + 1/c^2 + 2(1/ab + 1/ac + 1/bc) = M + 2 

=> M = 5 - 2 = 3

18 tháng 8 2016

thank bạn

QT
Quoc Tran Anh Le
Giáo viên
5 tháng 7 2019

a) ĐKXĐ: \(n^3+2n^2+2n+1\ne0\)

\(\Rightarrow\left(n+1\right)\left(n^2+n+1\right)\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}n+1\ne0\\n^2+n+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n\ne-1\\n^2+n+1\ne0\end{matrix}\right.\)

\(n^2+n+1=\left(n^2+n+\frac{1}{4}\right)+\frac{3}{4}=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\) Với mọi giá trị của n thì biểu thức trên lớn hơn 0

\(\Rightarrow n\ne-1\)

b) Ta có: \(n^3+2n^2-1=\left(n+1\right)\left(n^2+n-1\right)\)

Vậy,\(P=\frac{n^3+2n^2+2n+1}{n^3+2n^2-1}=\frac{\left(n+1\right)\left(n^2+n+1\right)}{\left(n+1\right)\left(n^2+n-1\right)}=\frac{n^2+n+1}{n^2+n-1}=1+\frac{2}{n^2-n+1}\)

Để P là phân số tối giản

\(\Leftrightarrow\frac{2}{n^2+n-1}\) là phân số tối giản

\(\Leftrightarrow n^2+n-1⋮̸2\)

Ta có: \(n^2+n=n\left(n+1\right)⋮2\) (vì n và n+1 là 2 số nguyên liên tiếp)

\(\Rightarrow n^2+n-1⋮̸2\)

Như vậy, P là phân số tối giản (điều phải chứng minh).