Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét hình thang ABCD có
M là trung điểm của CD
MN//AD//BC
Do đó: N là trung điểm của AB
Xét tứ giác AMDN có
AN//DM
AN=DM
Do đó: AMDN là hình bình hành
mà \(\widehat{A}=90^0\)
nên AMDN là hình chữ nhật
a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có
AD=CB
\(\widehat{D}=\widehat{B}\)
Do đó: ΔADH=ΔCBK
Suy ra: AH=CK
b: Xét tứ giác AHCK có
AK//CH
AH//CK
Do đó: AHCK là hình bình hành
Bài 2:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
DO đó: ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xet tứ giác AMCN có
AN//CM
AN=CM
Do đó: AMCN là hình bình hành
c: Gọi O là giao của AC và BD
=>O là trung điểm của AC
Xet ΔAKC có AN/AK=AO/AC
nên NO//KC
=>KC//BD
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
nên ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác BDKC có
KC//BD
DC=BK
Do đo; BDKC là hình thang cân
Bài 2:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
DO đó: ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xet tứ giác AMCN có
AN//CM
AN=CM
Do đó: AMCN là hình bình hành
c: Gọi O là giao của AC và BD
=>O là trung điểm của AC
Xet ΔAKC có AN/AK=AO/AC
nên NO//KC
=>KC//BD
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
nên ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác BDKC có
KC//BD
DC=BK
Do đo; BDKC là hình thang cân
a: Xét tứ giác EBDA có
EB//DA
EA//DB
Do đó: EBDA là hình bình hành
Xét tứ giác ABDF có
AB//DF
AF//BD
Do đó: ABDF là hình bình hành
a) t.g ADH=CBK (ch-gn)
=> AH=CK
mà AH=//CK (cùng vuông góc vs BD)
=> AHCK là hbh
b) do O là trung điểm của AC nên O cũng là trung điểm của HK (t/c hbh)
=>O,H,K thẳng hàng và HO=OK
=> h và K đối xứng qua O
a: Xét tứ giác AHCG có
AG//CH
AG=CH
Do đó: AHCG là hình bình hành
b: Xét ΔAEG và ΔCFH có
AE=CF
\(\widehat{A}=\widehat{C}\)
AG=CH
Do đó: ΔAEG=ΔCFH
Suy ra: EG=FH
Xét ΔEBH và ΔFDG có
EB=FD
\(\widehat{B}=\widehat{D}\)
BH=DG
DO đó: ΔEBH=ΔFDG
Suy ra: EH=FG
Xét tứ giác EHFG có
EH=FG
EG=HF
Do đó: EHFG là hình bình hành
c: ta có: ABCD là hình bình hành
nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(1)
Ta có: AECF là hình bình hành
nên hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường(2)
Ta có: EHFG là hình bình hành
nên Hai đường chéo EF,HG cắt nhau tại trung điểm của mỗi đường(3)
Từ (1), (2) và (3) suy ra AC,BD,GH,EF đồng quy
\(a,\) Vì ABCD là hbh nên \(AD=BC;AB//CD\Rightarrow\widehat{ADB}=\widehat{CBD}\left(so.le.trong\right)\)
Ta có \(\left\{{}\begin{matrix}\widehat{AED}=\widehat{CFB}\left(=90^0\right)\\\widehat{ADB}=\widehat{CBD}\left(cm.trên\right)\\AD=BC\left(cm.trên\right)\end{matrix}\right.\) nên \(\Delta AED=\Delta CFB\left(ch-gn\right)\)
\(\Rightarrow DE=BF\left(1\right)\)
Mà O là giao 2 đường chéo hbh ABCD nên O là trung điểm AC,BD
\(\Rightarrow OB=OD\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow OB-BF=OD-DE\Rightarrow OE=OF\)
\(b,\) Xét tg AECF có O là trung điểm AC,EF nên là hbh