K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

vì M>3suy ra gtnn của M=4

11 tháng 1 2017

Ta có : \(\frac{x^2+2x-9}{x-3}\)=\(\frac{x^2-9+2x}{x-3}\)=\(\frac{\left(x-3\right)\cdot\left(x+3\right)}{x-3}+\frac{2x+6-6}{x-3}\)=\(\left(x+3\right)+\frac{2x-6}{x-3}+\frac{6}{x-3}\)=\(\left(x-3\right)+6+\frac{2\cdot\left(x-3\right)}{x-3}+\frac{6}{x-3}=\left(x-3\right)+\frac{6}{x-3}+6+2=\left(x-3\right)+\frac{6}{x-3}+8\)                   Với x>0 áp dụng bất đẳng thức CÔ-SI ta có:(\(\left(x-3\right)+\frac{6}{x-3}>=2\sqrt{\left(x-3\right)\cdot\frac{6}{x-3}}=2\sqrt{6}\)==> M \(>=2\sqrt{6}+8\)  Vậy MIN M là \(2\sqrt{6}+8\)<==> \(\left(x-3\right)\cdot\left(x-3\right)=6\)<==>\(\left(x-3\right)=\sqrt{6}\)<==>\(x=\sqrt{6}+3\)

30 tháng 12 2016

Bạn thiiện hổi hãy sủa lại đề cho chuẩn:

lớp 8 rồi đùng viết như lớp 3 nữa

31 tháng 12 2016

\(M=\frac{x^2+2x-9}{x-3}\)\(=\frac{x^2-3x+5x-15+6}{x-3}\)\(=\frac{\left(x-3\right)\left(x+5\right)+6}{x-3}\)

\(M=x+5+\frac{6}{x-3}=x-3+\frac{6}{x-3}+8\)

\(\ge2\sqrt{\left(x-3\right).\frac{6}{x-3}}+8=2\sqrt{6}+8\)

(theo bđt AM-GM cho 2 số dương)

Dấu "=" xảy ra khi \(x-3=\frac{6}{x-3}\Leftrightarrow\left(x-3\right)^2=6\)

\(\Rightarrow x-3=\sqrt{6}\) (do x - 3 > 0)

\(\Rightarrow x=\sqrt{6}+3\)

Vậy Min M = \(2\sqrt{6}+8\Leftrightarrow x=\sqrt{6}+3\)

3 tháng 1 2017

tiểu ơi, sao tiểu ko đc làm ctv z

31 tháng 12 2016

Ta có

\(\frac{x^2+2x-9}{x-3}=\frac{x\left(x-3\right)+5\left(x-3\right)+6}{x-3}=x+5+\frac{6}{x-3}\)

Để M có GTLN thì \(\frac{6}{x-3}\) có GTLN

30 tháng 12 2016

13 nhé cậu

Cách làm tớ đang suy nghĩ

13 tháng 1 2019

\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)

\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)

\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)

13 tháng 1 2019

Giải các câu khác giúp mình với 

7 tháng 11 2018

\(ĐKXĐ:\hept{\begin{cases}x-3\ne0\\3x^2-6x-9\ne0\\3x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne3\\3\left(x^2-2x-3\right)\ne0\\3\left(x+1\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

\(M=\left(\frac{x}{x-3}-\frac{x+3}{3x^2-6x-9}+\frac{1}{3x+3}\right).\frac{x^2-2x-3}{x^2+x+2}\)

\(=\left[\frac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\frac{x+3}{3\left(x^2-2x-3\right)}+\frac{1}{3\left(x+1\right)}\right].\frac{x^2-2x-3}{x^2+x+2}\)

\(=\left[\frac{3x\left(x+1\right)}{3\left(x+1\right)\left(x-3\right)}-\frac{x+3}{3\left(x+1\right)\left(x-3\right)}+\frac{x-3}{3\left(x+1\right)\left(x-3\right)}\right].\frac{x^2-2x-3}{x^2+x+2}\)

\(=\frac{3x\left(x+1\right)-x-3+x-3}{3\left(x+1\right)\left(x-3\right)}.\frac{x^2-2x-3}{x^2+x+2}\)

\(=\frac{3x^2+3x-6}{3\left(x+1\right)\left(x-3\right)}.\frac{x^2-2x-3}{x^2+x+2}\)

\(=\frac{x^2+x-2}{\left(x+1\right)\left(x-3\right)}.\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}=\frac{x^2+x-2}{x^2+x+2}\)

7 tháng 11 2018

\(=\frac{x^2+x-2}{x^2+x+2}=1-\frac{4}{x^2+x+2}\)

b,\(\text{Với }x\ne-1\text{ và }x\ne3\text{ ta có:}\)

\(\text{Để }M=1-\frac{4}{x^2+x+2}< 1\)

\(\Leftrightarrow-\frac{4}{x^2+x+2}< 0\)

\(\Leftrightarrow\frac{4}{x^2+x+2}>0\)

\(\Leftrightarrow4>0\left(\text{hiển nhiên}\right)\)

Vậy ... đpcm

25 tháng 3 2020

C = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\forall x\)

Dấu "=" xảy ra <=> 3x - 1 = 0 =<=> x = 1/3

Vậy MinC = -1/2 khi x = 1/3

M = \(\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\forall x\)

Dấu "=" xảy ra <=> x + 1/2= 0 <=> x = -1/2

Vậy MaxM = 6/5 khi x = -1/2

N = x  - x2 = -(x2 - x + 1/4) + 1/4 = -(x - 1/2)2 + 1/4 \(\le\)1/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy MaxN = 1/4 khi x = 1/2

25 tháng 3 2020

Edogawa Conan giúp em luôn bài giá trị lớn nhất luôn được không ạ?

NV
13 tháng 4 2020

\(A=\frac{8\left(x-2\right)+x^2-10x+25}{x-2}=8+\frac{\left(x-5\right)^2}{x-2}\ge8\)

\(A_{min}=8\) khi \(x=5\)