K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

Bạn thiiện hổi hãy sủa lại đề cho chuẩn:

lớp 8 rồi đùng viết như lớp 3 nữa

24 tháng 12 2016

vì M>3suy ra gtnn của M=4

11 tháng 1 2017

Ta có : \(\frac{x^2+2x-9}{x-3}\)=\(\frac{x^2-9+2x}{x-3}\)=\(\frac{\left(x-3\right)\cdot\left(x+3\right)}{x-3}+\frac{2x+6-6}{x-3}\)=\(\left(x+3\right)+\frac{2x-6}{x-3}+\frac{6}{x-3}\)=\(\left(x-3\right)+6+\frac{2\cdot\left(x-3\right)}{x-3}+\frac{6}{x-3}=\left(x-3\right)+\frac{6}{x-3}+6+2=\left(x-3\right)+\frac{6}{x-3}+8\)                   Với x>0 áp dụng bất đẳng thức CÔ-SI ta có:(\(\left(x-3\right)+\frac{6}{x-3}>=2\sqrt{\left(x-3\right)\cdot\frac{6}{x-3}}=2\sqrt{6}\)==> M \(>=2\sqrt{6}+8\)  Vậy MIN M là \(2\sqrt{6}+8\)<==> \(\left(x-3\right)\cdot\left(x-3\right)=6\)<==>\(\left(x-3\right)=\sqrt{6}\)<==>\(x=\sqrt{6}+3\)

31 tháng 12 2016

\(M=\frac{x^2+2x-9}{x-3}\)\(=\frac{x^2-3x+5x-15+6}{x-3}\)\(=\frac{\left(x-3\right)\left(x+5\right)+6}{x-3}\)

\(M=x+5+\frac{6}{x-3}=x-3+\frac{6}{x-3}+8\)

\(\ge2\sqrt{\left(x-3\right).\frac{6}{x-3}}+8=2\sqrt{6}+8\)

(theo bđt AM-GM cho 2 số dương)

Dấu "=" xảy ra khi \(x-3=\frac{6}{x-3}\Leftrightarrow\left(x-3\right)^2=6\)

\(\Rightarrow x-3=\sqrt{6}\) (do x - 3 > 0)

\(\Rightarrow x=\sqrt{6}+3\)

Vậy Min M = \(2\sqrt{6}+8\Leftrightarrow x=\sqrt{6}+3\)

3 tháng 1 2017

tiểu ơi, sao tiểu ko đc làm ctv z

31 tháng 12 2016

Ta có

\(\frac{x^2+2x-9}{x-3}=\frac{x\left(x-3\right)+5\left(x-3\right)+6}{x-3}=x+5+\frac{6}{x-3}\)

Để M có GTLN thì \(\frac{6}{x-3}\) có GTLN

30 tháng 12 2016

13 nhé cậu

Cách làm tớ đang suy nghĩ

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

13 tháng 1 2019

\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)

\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)

\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)

13 tháng 1 2019

Giải các câu khác giúp mình với 

19 tháng 2 2018

\(A=\frac{x}{3}+\frac{3}{x-2}\)

\(=\frac{x-2}{3}+\frac{3}{x-2}+\frac{2}{3}\)

Áp dụng Cauchy nữa là đc