Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, +) Thay y = -2 vào phương trình trên ta có :
( -2 + 1 )2 = 2 . ( -2 ) + 5
1 = 1
Vậy y = -2 thỏa mãn phương trình trên
+) Thay y = 1 vào phương trình trên , ta có :
( 1 + 1)2 = 2 . 1 + 5
4 = 7
Vậy y = 1 thỏa mãn phương trình trên
b, +) Thay x =-3 vaò phương trình trên , ta có :
( -3 + 2 )2 = 4 . ( -3 ) + 5
2 = -7
Vậy x = -3 không thỏa mãn phuong trình trên
+) Thay x = 1 vào phương trình trên , ta có :
( 1 + 2 )2 = 4 . 1 + 5
9 = 9
Vậy x = 1 thỏa mãn phương trình trên
c, +) Thay t = -1 vào phương trình , ta có :
[ 2 . ( -1 ) + 1 ]2 = 4 . ( -1 ) + 5
1 = 1
Vậy t = -1 thỏa mãn phương trình trên
+) Thay t = 3 vào phương trình trên , ta có :
( 2 . 3 + 1 )2 = 4 . 3 + 5
49 = 17
Vậy t = 3 không thỏa mãn phương trình trên
d, +) Thay z = -2 vào phương trình trên , ta có :
( -2 + 3 )2 = 6 . ( -2 ) + 10
1 = -2
Vậy z = -2 không thỏa mãn phương trình trên
+) Thay z = 1 vào phương trình trên , ta có :
( 1 + 3 )2 = 6 . 1 + 10
16 = 16
Vậy z =1 thỏa mãn phương trình trên
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
a: \(\Leftrightarrow x^2-2x+1+y^2+2y+1+z^2-4z+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(z-2\right)^2=0\)
=>x=1; y=-1; z=2
b: \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số nguyên liên tiếp
nên \(a\left(a+1\right)\left(a+2\right)⋮3!\)
hay \(a\left(a+1\right)\left(a+2\right)⋮6\)
1.
a)\(M=\left(2n-1\right)^3-\left(2n\right)^2+2n+1\)
\(M=8n^3-12n^2+6n-1-4n^2+2n+1\)
\(M=8n^3-16n^2+8n\)
\(M=8n\left(n^2-2n+1\right)\)
\(M=8n\left(n-1\right)^2\)
b) Dễ thấy M=8n(n-1)2 chia hết cho 8. Xét n(n-1)2=(n-1).n.(n-1) có tích của 2 số tự nhiên liên tiếp n-1 và n
Trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 => (n-1).n chia hết cho 2 => n(n-1)2 chia hết cho 2
=> M=8n(n-1)2 chia hết cho 8.2=16 (đpcm)
Hướng chứng minh: Hmmm bài này chỉ cần chứng minh chữ số tận cùng của \(403^{403}-17^{17}\) là 0.
Ta có: \(403^{403}=\left(...3\right)^3=\left(...27\right)\) Thấy chữ số tận cùng là 7
Và: \(17^{17}=\left(17^4\right)^4.17=\left(...1\right)^4.\left(...7\right)=\left(...7\right)\) Ta lại thấy có chữ số tận cùng là 7.
Vậy hiệu \(403^{403}-17^{17}\) có chữ số tận cùng bằng 0