Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a)\(M=\left(2n-1\right)^3-\left(2n\right)^2+2n+1\)
\(M=8n^3-12n^2+6n-1-4n^2+2n+1\)
\(M=8n^3-16n^2+8n\)
\(M=8n\left(n^2-2n+1\right)\)
\(M=8n\left(n-1\right)^2\)
b) Dễ thấy M=8n(n-1)2 chia hết cho 8. Xét n(n-1)2=(n-1).n.(n-1) có tích của 2 số tự nhiên liên tiếp n-1 và n
Trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 => (n-1).n chia hết cho 2 => n(n-1)2 chia hết cho 2
=> M=8n(n-1)2 chia hết cho 8.2=16 (đpcm)
1) Từ \(x+y+z=6\) và \(x^2+y^2+z^2=12\)ta dễ dàng suy ra \(xy+yz+zx=12\)
Như vậy \(x^2+y^2+z^2=xy+yz+zx\) \(\Leftrightarrow x=y=z\)
Mà \(x+y+z=6\)nên \(x=y=z=2\)thay vào Q ta tính được Q = 3.
Bài dưới mình có làm ra được 2 cách, bạn hiểu cách nào thì làm
Cách 1: Dùng phương pháp quy nạp (cách này mình cũng không biết được sử dụng trong trg hợp này ko)
-Với n=1 thì \(2^{2n}\left(2^{2n+1}-1\right)-1=2^2\left(2^3-1\right)-1=4.8-1=27\)chia hết cho 9
Vậy mệnh đề đúng với n=1
-Giả sử tồn tại số k sao cho \(2^{2k}\left(2^{2k+1}-1\right)-1\) chia hết cho 9 (giả thiết quy nạp). Do đó, \(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1
Ta phải cm mệnh đề cũng đúng với k+1:
Thật vậy, \(2^{2\left(k+1\right)}\left(2^{2\left(k+1\right)+1}-1\right)-1=2^{2k+2}\left(2^{2k+3}-1\right)-1=2^{2k+4}\left(2^{2k+1}-\frac{1}{4}\right)-1\)
<=> \(2^{2k+4}\left(2^{2k+1}-1\right)+\frac{3}{4}\left(2^{2k+4}\right)-1=2^{2k}.16.\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)
Ta thấy:
\(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1. Do đó, \(2^{2k}.16.\left(2^{2k+1}-1\right)\)chia 9 dư 7.
Các số có cơ số =2, số mũ lẻ thì tích của số đó với 3 khi chia 9 dư 6. Còn các số có cơ số =2, số mũ chẵn thì tích của số đó với 3 khi 9 dư 3. Vậy tích \(3.2^{2k+2}\) chia 9 dư 3
-1 chia 9 dư -1
Vậy \(2^{2k+4}\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)chia 9 dư 7+3-1=9 chia hết cho 9
Kết luận: Mệnh đề đúng với mọi n thuộc Z
Bài 1:
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)
\(A=x^3-y^3+2y^3\)
\(A=x^3+y^3\)
Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:
\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)
Bài 2:
a, \(x+y=xy\)
\(\Rightarrow x+y-xy=0\)
\(\Rightarrow-xy+x+y-1=-1\)
\(\Rightarrow-x.\left(y-1\right)+\left(y-1\right)=-1\)
\(\Rightarrow\left(y-1\right).\left(1-x\right)=-1\)
\(\Rightarrow y-1;1-x\inƯ\left(-1\right)\)
\(\Rightarrow y-1;1-x\in\left\{-1;1\right\}\)
Ta có bảng sau:
\(1-x\) | -1 | 1 |
\(y-1\) | 1 | -1 |
x | 2 | 0 |
y | 2 | 0 |
Chọn or loại | Chọn | Chọn |
Vậy.............
b, \(xy-x+2\left(y-1\right)=13\)
\(\Rightarrow x.\left(y-1\right)+2\left(y-1\right)=13\)
\(\Rightarrow\left(y-1\right)\left(x+2\right)=13\)
\(\Rightarrow y-1;x+2\inƯ\left(13\right)\)
\(\Rightarrow y-1;x+2\in\left\{-13;-1;1;13\right\}\)
Ta có bảng sau:
\(x+2\) | -13 | -1 | 1 | 13 |
\(y-1\) | -1 | -13 | 13 | 1 |
x | -15 | -3 | -1 | 11 |
y | 0 | -12 | 14 | 2 |
Chọn or loại | Chọn | Chọn | Chọn | Chọn |
Vậy.............
Chúc bạn học tốt!!!
B1:
a) \(77^{n+1}+77^n=77^n.77+77^n=77^n.78\) \(⋮\) \(78\)
b) \(n^2\left(n-1\right)+\left(n^2-n\right)\)
= \(n^2\left(n-1\right)+n\left(n-1\right)\)
= \(\left(n-1\right).n\left(n+1\right)\)
Dấu hiệu chia hết cho 6 là tích của 3 số liên tiếp sẽ chia hết cho 6. Ta thấy KQ có tích \(\left(n-1\right).n\left(n+1\right)\) là 3 số liên tiếp nên \(\left(n-1\right).n\left(n+1\right)\) \(⋮\) 6
c) \(\left(2n+1\right)^3-\left(2n+1\right)\)
= \(\left(2n+1\right)\left[\left(2n+1\right)^2-1\right]\)
= \(\left(2n+1\right)\left(2n+1-1\right)\left(2n+1+1\right)\)
= \(\left(2n+1\right)^2.2n.\left(2n+2\right)\)
= \(\left(2n+1\right)^2.4n.\left(n+1\right)\)
Ta thấy tích trên có một số hạng là 4n \(⋮\) 2 và 4
Dấu hiệu chia hết cho 8 là chia hết cho 2 và 4
Nên \(\left(2n+1\right)^2.4n.\left(n+1\right)\) \(⋮\) 8
Hay \(\left(2n+1\right)^3-\left(2n+1\right)\) \(⋮\) 8