Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
B1: Giải:
\(n^4+6n^3+11n^2+6n\)
= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)
= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)
= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)
= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)
= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)
= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)
= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)
Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.
Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)
a,
6n^2 - n + 5 2n + 1 3n - 2 6n^2 + 3n -4n + 5 -4n - 2 7 \
Để \(A⋮B\) \(\Leftrightarrow7⋮2n+5\) \(\Leftrightarrow2n+5\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Ta có bảng sau :
\(2n+5\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(n\) | \(-2\) | \(1\) | \(-3\) | \(-6\) |
Vậy \(\left[{}\begin{matrix}n=-2\\n=1\\n=-3\\n=-6\end{matrix}\right.\) thì A chia hết cho B
b, tường tự câu a
Nếu mà bn ko lm đc thì nói mk ,mk sẽ giải cho
Đặt tính chia:
6n-n+5 2 2n+1 3n-2 6n+3n - 2 -4n+5 - -4n-2 _______________ 7
\(\Rightarrow\text{Để }A⋮B\\ \text{thì }\Rightarrow7⋮2n+1\\ \Rightarrow2n+1\inƯ_{\left(7\right)}\\ \text{Mà }Ư_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)
Ta lập bảng giá trị :
\(2n+1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(n\) | \(-1\) | \(0\) | \(-4\) | \(3\) |
\(\Rightarrow n\in\left\{-4;-1;0;3\right\}\)
\(\text{Vậy }\text{ để }A⋮B\text{ thì }n\in\left\{-4;-1;0;3\right\}\)
b) Xem lại đề
\(\)
n4 +6n3 + 11n2 + 6n
= n ( n3 + 2n2 + 4n2 + 8n + 3n + 6)
= n (n+2)(n2 + 4n + 3)
=n(n+2)(n+1)(n+3) là tích 4 số tự nhiên liên tiếp nên chia hết cho 8 và 3.
Mà (3;8) = 1 => n4 +6n3 + 11n2 + 6n chia hết cho 24
Ta có :
\(n^4+6n^3+11n^2+6n\)
\(=n^4+2n^3+4n^3+8n^2+3n^2+6n\)
\(=n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3+4n^2+3n\right)\)
\(=\left(n+2\right)\left(n^3+n^2+3n^2+3n\right)\)
\(=\left(n+2\right)\left[n^2\left(n+1\right)+3n\left(n+1\right)\right]\)
\(=\left(n+2\right)\left(n+1\right)\left(n^2+3n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)là tích của 4 số tự nhiên liên tiếp .
Nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
\(\Rightarrow n^4+6n^3+11n^2+6n⋮24\) ( đpcm )