K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

B1: Giải:

\(n^4+6n^3+11n^2+6n\)

= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)

= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)

= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)

= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)

= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)

= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)

= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.

Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)

Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)

Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.

Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)

Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)

20 tháng 10 2016

Ta có

x4 - 4x3 - 4x2 + 16 = (x - 4)(x - 2)x(x + 2)

Đây là tích của 4 số chẵn liên tiếp

Trong 4 số chẵn liên tiếp sẽ có 1 số chia hết cho 2, 1 số chia hết cho 4, 1 số chia hết cho 6, 1 số chia hết cho 8

Vậy số đó chia hết cho 2×4×6×8 = 384

20 tháng 10 2016

Ta có 

x4 + 2x3 - x2 - 2x = (x - 1)x(x + 1)(x + 2)

Trong bốn số liên tiếp có 2 số chẵn trong 2 số chẵn đó có 1 số chia hết cho 2 và 1 số chia hết cho 4 nên nó chia hết cho 8

Trong 4 số liên tiếp có 1 số chia hết cho 3

Mà 8 và 3 nguyên tố cùng nhau nên nó chia hết cho 24

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Ta phân tích biểu thức đã cho ra nhân tử :

A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n

=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)

=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)

=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

11 tháng 11 2016

em cam on thay a

16 tháng 9 2016

undefined

16 tháng 9 2016

khó nhìn thiệt nhưng chắc đúng

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

8 tháng 9 2016

Ta có 384 = 3.128 và (3; 128) = 1 Lại có n chẵn và n > 4  n = 2k ( k  N, k > 2)  A = n4 – 4n3 – 4n + 16n = 16k4 – 32k3 – 16k2 + 32k = 16k(k3 – 2k2 – k + 2) = 16k(k – 2)(k – 1)(k + 1) Mà k, k – 2, k – 1, k + 1 là 4 số nguyên liên tiếp nên luôn có một số chia hết cho 2 và một số chia hết cho 4.  k(k – 2)(k – 1)(k + 1)  8  A  16.8 hay A  128 Mặt khác ba trong 4 số nguyên liên tiếp k, k – 2, k – 1, k + 1 phải có một số chia hết cho 3 nên A  3 mà (3; 128) = 1 nên A  384. Vậy A = n4 – 4n3 – 4n2 + 16n 384 với mọi n chẵn và n > 4

bạn chứng minh tương tự như trên nhé tha số thôi leu

8 tháng 9 2016

Do n là số chẵn => n = 2.k (k > 1)

Ta có:

n4 - 4n3 - 4n2 + 16n

= (2k)4 - 4.(2k)3 - 4.(2k)2 + 16.2k

= 24.k4 - 4.23.k3 - 4.22.k2 + 32k

= 16.k4 - 32k- 16k2 + 32k

= 16k3.(k - 2) - 16k.(k - 2)

= (k - 2).(16k3 - 16k)

= (k - 2).16k.(k2 - 1)

= 16.(k - 2)(k - 1).k.(k + 1)

Vì (k - 2).(k - 1).k.(k + 1) là tích 4 số tự nhiên liên tiếp nên (k - 2).(k - 1).k.(k + 1) chia hết cho 3 và 8

Mà (3;8)=1 => (k - 2).(k - 1).k.(k + 1) chia hết cho 24

=> 16.(k - 2).(k - 1).k.(k + 1) chia hết cho 384

=> n4 - 4n3 - 4n2 + 16n chia hết cho 384 (đpcm)

16 tháng 6 2015

\(=n^4+2n^3+4n^3+8n^2+15n^2+30n-12n-24+24=\left(n+2\right)\left(n^3+4n^2+15n-12\right)+24\)

\(=\left(n+2\right)\left(n^3-3n^2+7n^2-21n+36n-12\right)+24=\left(n+2\right)\left(n-3\right)\left(n^2+7n+12\right)+24\)

\(=\left(n+2\right)\left(n-3\right)\left(n^2+3n+4n+12\right)+24=\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+1-4\right)+24\)

\(=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)-4\left(n+2\right)\left(n+3\right)\left(n+4\right)+24\)

(n+1)(n+2)(n+3)(n+4) là tích 4 số tự nhiên liên tiếp => chia hết cho 1.2.3.4=24

(n+2)(n+3)(n+4) là tích 3 số tự nhiên liên tiếp => chia hết cho 1.2.3=6 => 4(n+2)(n+3)(n+4) chia hết cho 4.6=24

biểu thức vừa thu gọn là tổng hiệu của các số chia hết cho 24 => chia hết cho 24