Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: Giải:
\(n^4+6n^3+11n^2+6n\)
= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)
= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)
= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)
= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)
= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)
= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)
= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)
Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.
Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)
Ta có: \(n^4-14n^3+71n^2-154n+120\)
= \(n^4-7n^3-7n^3+12n^2+49n^2+10n^2-84n-70n+120\)
= \(\left(n^4-7n^3+12n^2\right)-\left(7n^3-49n^2+84n\right)+\left(10n^2-70n+120\right)\)
= \(n^2\left(n^2-7n+12\right)-7n\left(n^2-7n+12\right)+10\left(n^2-7n+120\right)\)
=\(\left(n^2-7n+10\right)\left(n^2-7n+12\right)\)
=\(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)
Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 nên \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 3.
Trong 4 số tự nhiên liên tiếp luôn có 2 số chẵn nên \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 8.
Do \(\left(3,8\right)=1\)nên \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 24.
B= (n^4 - 14n^3 + 49n^2) + 22n^2 -154n +120
= n^2(n^2 -14n +49) + 22n(n-7) +120
= (n(n-7))^2 +10n(n-7) + 12n(n-7) + 10*12
= n(n-7)[n(n-7) + 10] + 12[n(n-7) +10]
= [n(n-7) +10] * [n(n-7) + 12]
= (n^2 - 7n + 10)(n^2 - 7n +12)
= (n-2)(n-5)(n-3)(n-4)
= (n-5)(n-4)(n-3)(n-2)
B là tích của 4 số tự nhiên liên tiếp
=> B chia hết cho 2, 3, 4 mà 2, 3, 4 nguyên tố cùng nhau
Suy ra: B chia hết 2x3x4
Hay B chia hết cho 24.
Bn chịu khó đọc nha!
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24
x6m+4+x6n+2+1=x6m+4-x4+x6n+2-x2+x4+x2+1
=x4.(x6m-1)+x2.(x6n-1)+(x4+x2+1)
Vì x6m-1 chia hết cho x6-1 , x6n-1 chia hết cho x6-1 và
x6-1=(x3+1)(x3-1) chia hết cho x2-x+1
x4+x2+1=(x2+1)2-x2 chia hết cho x2-x+1
=> đpcm
ta có: A= \(n^3-6n^2+11n-6\)
<=>A=\(n^3-n^2-5n^2+5n+6n-6\)
<=>A=\(n^2\left(n-1\right)-5n\left(n-1\right)+6\left(n-1\right)\)
<=>A=\(\left(n^2-5n+6\right)\left(n-1\right)\)
<=>A=\(\left(n-1\right)\left(n-2\right)\left(n-3\right)\)
Mặt khác: (n-1) ; (n-2) ; (n-3) là 3 số liên tiếp nên \(\left(n-1\right)\left(n-2\right)\left(n-3\right)\) là tích của 3 số liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3. mà 2 và 3 nguyên tố cùng nhau nên A chia hét cho (2.3)=6
khó nhìn thiệt nhưng chắc đúng