Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a/ \(A=2+2^2+2^3+....+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)
\(=2.3+2^3.3+....+2^9.3\)
\(=3\left(2+2^3+.....+2^9\right)⋮3\)
\(\Leftrightarrow A⋮3\left(đpcm\right)\)
b/ \(A=2+2^2+2^3+....+2^{10}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31\)
\(=31\left(2+2^6\right)⋮31\)
\(\Leftrightarrow A⋮31\left(đpcm\right)\)
2/ Với mọi n là số tự nhiên thì \(n\) có hai dạng :
\(\left[{}\begin{matrix}n=2k\\n=2k+1\end{matrix}\right.\)
+) \(n=2k\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)\)
Mà \(2k+4⋮2\)
\(\Leftrightarrow\left(2k+4\right)\left(2k+7\right)⋮2\)
\(\Leftrightarrow B\) là số chẵn
+) \(n=2k+1\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+1+4\right)\left(2k+1+7\right)=\left(2k+5\right)\left(2k+8\right)\)
Mà \(2k+8⋮2\)
\(\Leftrightarrow\left(2k+5\right)\left(2k+8\right)⋮2\)
\(\Leftrightarrow B\) là số chẵn
Vậy...
1/
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(A=2.3+2^3.3+2^5.5+...+2^9.3=3.\left(2+2^3+...+2^9\right)\)
Do \(3⋮3\Rightarrow A⋮3\)
\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)
\(A=2.31+2^6.31=31\left(2+2^6\right)\)
Do \(31⋮31\Rightarrow A⋮31\)
2/ \(B=\left(n+4\right)\left(n+7\right)\)
Nếu n chẵn, đặt \(n=2k\Rightarrow B=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)
Do 2 chẵn nên B chẵn
Nếu n lẻ, đặt \(n=2k+1\Rightarrow B=\left(2k+5\right)\left(2k+8\right)=2\left(2k+5\right)\left(k+4\right)\)
2 chẵn nên B chẵn
Vậy B luôn chẵn với mọi n
3/ Đề là B(112) hay B(121) bạn?
Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Bài 1: CM A = n2 + n + 6 ⋮ 2
+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)
Khi đó: A = (2k)2 + 2k + 6
A = 4k2 + 2k + 6
A = 2.(2k2 + k + 3) ⋮ 2
+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ
Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn
⇒ A = n2 + n + 6 là số chẵn
A = n2 + n + 6 ⋮ 2
+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N
Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:
Bài 2: CM: A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N
Với n = 1 ta có: A = 13 + 1.5
A = 1 + 5 = 6 ⋮ 6
Giả sử A đúng với n = k (k \(\in\) N)
Khi đó ta có: A = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)
Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k + 1
Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6
Thật vậy với n = k + 1 ta có:
A = (k + 1)3 + 5(k + 1)
A = (k +1).(k + 1)(k + 1) + 5.(k +1)
A = (k2 + k + k +1).(k + 1) + 5k +5
A = [k2 + (k + k) + 1].(k + 1) + 5k + 5
A = [k2 + 2k + 1].(k + 1) + 5k + 5
A = k3 + k2 + 2k2 + 2k + k +1 +5k +5
A = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5)
A = (k3 + 5k) + 3k2 + 3k + 6
A = (k3 + 5k) + 3k(k +1) + 6
k.(k +1) là tích của hai số liên tiếp nên luôn chia hết cho 2
⇒ 3.k.(k + 1) ⋮ 6 (2)
6 ⋮ 6 (3)
Kết hợp (1); (2) và (3) ta có:
A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N
Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)
Ta có :
\(3^n+3^{n+1}+2^{n+2}+2^{n+3}\)
\(=3.\left(3^{n-1}+3^n\right)+2.\left(2^{n+1}+2^{n+2}\right)\)
Số này vừa chia hết cho 3 ; vừa chia hết cho 2 nên chia hết cho 6
Đặt A = 3n+2 - 2n+2 + 3n - 2n
=> A = (3n+2 + 3n) - ( 2n+2 + 2n)
=> A = 3n.( 1 + 32) - 2n.(1+22)
=> A = 3n.10 - 2n.5
Mà 3n.10 và 2n.5 chia hết cho10
=> A chia hết cho 10
Vậy 3n+2-2n + 2+3n-2n chia hết cho 10 (đpcm)