K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

Đặt A = 3n+2 - 2n+2 + 3- 2n

=> A = (3n+2 + 3n) - ( 2n+2 + 2n)

=> A = 3n.( 1 + 32) - 2n.(1+22)

=> A = 3n.10 - 2n.5

Mà 3n.10 và 2n.5 chia hết cho10

=> A chia hết cho 10

Vậy  3n+2-2n + 2+3n-2n chia hết cho 10 (đpcm)

19 tháng 11 2018

1/a/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)

\(=2.3+2^3.3+....+2^9.3\)

\(=3\left(2+2^3+.....+2^9\right)⋮3\)

\(\Leftrightarrow A⋮3\left(đpcm\right)\)

b/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31\)

\(=31\left(2+2^6\right)⋮31\)

\(\Leftrightarrow A⋮31\left(đpcm\right)\)

2/ Với mọi n là số tự nhiên thì \(n\) có hai dạng :

\(\left[{}\begin{matrix}n=2k\\n=2k+1\end{matrix}\right.\)

+) \(n=2k\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)\)

\(2k+4⋮2\)

\(\Leftrightarrow\left(2k+4\right)\left(2k+7\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

+) \(n=2k+1\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+1+4\right)\left(2k+1+7\right)=\left(2k+5\right)\left(2k+8\right)\)

\(2k+8⋮2\)

\(\Leftrightarrow\left(2k+5\right)\left(2k+8\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

Vậy...

NV
19 tháng 11 2018

1/

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(A=2.3+2^3.3+2^5.5+...+2^9.3=3.\left(2+2^3+...+2^9\right)\)

Do \(3⋮3\Rightarrow A⋮3\)

\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)

\(A=2.31+2^6.31=31\left(2+2^6\right)\)

Do \(31⋮31\Rightarrow A⋮31\)

2/ \(B=\left(n+4\right)\left(n+7\right)\)

Nếu n chẵn, đặt \(n=2k\Rightarrow B=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)

Do 2 chẵn nên B chẵn

Nếu n lẻ, đặt \(n=2k+1\Rightarrow B=\left(2k+5\right)\left(2k+8\right)=2\left(2k+5\right)\left(k+4\right)\)

2 chẵn nên B chẵn

Vậy B luôn chẵn với mọi n

3/ Đề là B(112) hay B(121) bạn?

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

24 tháng 9 2015

Ta có :

\(3^n+3^{n+1}+2^{n+2}+2^{n+3}\)

\(=3.\left(3^{n-1}+3^n\right)+2.\left(2^{n+1}+2^{n+2}\right)\)

Số này vừa chia hết cho 3 ; vừa chia hết cho 2 nên chia hết cho 6

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15