K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

TH1: n là số lẻ thì \(2^n\)+1 chia hết cho 3 =>(\(2^n\)+1) (\(2^n\)+2) chia hết cho 3 TH2: n là so chẵn thì \(2^n\)+2 chia hết cho 3 =>(\(2^n\)+1) (\(2^n\)+2) chia hết cho 3 Vậy với mọi n thuộc N thì (2n + 1) (2n+2) chia hết cho 3

haha

5 tháng 4 2019

a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow(60n+5)-(60n+4)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số  tối giản với mọi số tự nhiên n

Câu b tự làm

\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)

15 tháng 7 2015

 

a_)3n+2 - 2n+2 +3n - 2n 

 =(3n+2+3n)+(-2n+2-2n)

=(3n.32+3n.1)+(-2n.22-2n+1)

=3n.(9+1)-2n.(4+1)

=3n.10-2n.5

ta có 3n.10 chia hết cho 10 và 2n.5 chia hết cho 10( vì có thừa số 2 và 5)

=> 3n+2 - 2n+2 +3n - 2n chia hết cho 10.

 

 

 

13 tháng 2 2016

á thế còn câu b thì sao pn mik cug cần

 

Vì n là số tự nhiên nên n có dạng:

n=2k hoặc n= 2k+1 ( k ∈N∈N)

Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)

= 2(2k+3)(k+6)⋮⋮2

⇒⇒(n+3)(n+12) ⋮2⋮2

Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)

= (2k+4)(2k+13)

= 2(k+2)(2k+13)⋮2⋮2

⇒⇒ (n+3)(n+12)⋮2⋮2

Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

23 tháng 1 2019

Đề sai 100%

Thử n=0 là biết