Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 3n(32+1) - 2n(22+1) = 5 ( 2.3n - 2n) = 10.( 3n - 2n-1) chia hết cho 10 với mọi n thuộc N*
a_)3n+2 - 2n+2 +3n - 2n
=(3n+2+3n)+(-2n+2-2n)
=(3n.32+3n.1)+(-2n.22-2n+1)
=3n.(9+1)-2n.(4+1)
=3n.10-2n.5
ta có 3n.10 chia hết cho 10 và 2n.5 chia hết cho 10( vì có thừa số 2 và 5)
=> 3n+2 - 2n+2 +3n - 2n chia hết cho 10.
3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n+1(9 + 1 ) + 2n+3 + 2n+2 chia hết 2
3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n+1 + 3n+3 + 2n+2 ( 2+1 ) chia hết 3
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
\(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
=\(3^n.10-2^n.5=3^n.10-2^{n-1}.2.5=10\left(3^n-2^{n-1}\right)\)
Luôn luôn chia hết cho 10 => ĐPCM
b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath