K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Biến đổi VT, ta được:

\(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2-a^2d^2-2abcd-b^2c^2\)

\(=a^2c^2+b^2d^2-a^2d^2-b^2c^2\)

\(=a^2\left(c^2-d^2\right)+b^2\left(d^2-c^2\right)=\left(c^2-d^2\right)\left(a^2-b^2\right)\)

Vậy...........

13 tháng 7 2016

( a2 - b2). ( c2 - d2 ) = ( a.c + b.d)2 - ( a.d + b.c)2

Mình viết nhầm đề, các bạn giúp mình giải gấp nha !!!

17 tháng 8 2015

 

a,VT= (a+b).(a2-a.b+b2) +(a-b).(a2+a.b+b2

=a3+b3+a3-b3

=2a3

=VP

=> điều phải chứng minh

 

b,VP= (a+b).((a-b)2+a.b)

=(a+b)(a2-2a.b+b2+a.b)

=(a+b)(a2-a.b+b2)

=a3+b3

=>điều phải chứng minh

 

  

17 tháng 8 2015

a/ ta có vế trái = a+ b+ a- b3 
                     = 2a3 = vế phải
b/ ta có vế phải = (a+b).(a2 - 2.a.b + b2 + a.b)
                       = (a+b).(a2 - ab + b2
                       = a3 + b= vế trái
c/ ta có vế phải = (a2c2 + 2acbd + b2d2) + (a2d2 - 2adbc + b2c2)
                       = a2c2 + 2abcd +b2d2 + a2d2 - 2abcd + b2c2
                            
  = a2c2 + b2d2 + a2d2 + b2c2
                       = a2.(c2 + d2) + b2.(c2+ d2)
                       = (a2 + b2) . (c2 + d2) = vế trái
 

16 tháng 8 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{\left(b^2.k^2\right)+\left(d^2.k^2\right)}{b^2+d^2}\)

\(=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)

và \(\frac{ab}{cd}=\frac{bk.dk}{b.d}=k^2\)(2)

Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(đpcm)

10 tháng 7 2021

¿??????¿¿¿¿

28 tháng 3 2018

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+3-2x-2y-2z\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

Dáu "="  xảy ra  \(\Leftrightarrow\) \(x=y=z=1\)

a,b,c,d > 0 ta có:

- a < b nên a.c < b.c

- c < d nên c.b < d.b

Áp dụng tính chất bắc cầu ta được: a.c < b.c < b.d hay a.c < b.d (đpcm)

24 tháng 8 2015

a2 + b+ (a + b)= c+ d2 + (c +d)2 => 2.(a+ b2) + 2ab = 2.(c+ d2) + 2cd

=> a+ b+ ab = c+ d+ cd   (1)

+) a+ b+ (a + b)4 = (a2 + b2)2  - 2a2.b2 + (a + b)4 = [(a+ b2)2 - a2.b2] + [(a + b)- a2.b2]

= (a2 + b2 - ab). (a2 + b2 + ab) +  [(a + b)2 - ab].[(a+ b)+ ab]

=  (a2 + b- ab). (a+ b2 + ab) + (a2 + b2 + ab). (a2 + b+ 3ab) = (a+ b+ ab). [(a2 + b- ab) + (a2 + b2 + 3ab)]

= 2.(a+ b2 + ab).(a2 + b2 + ab) = 2.(a2 + b2 + ab)2           (2)

Tương tự: c+ d4 + (c+d)4 = 2. (c2 + d2 + cd)2   (3)

Từ (1)(2)(3) => đpcm

30 tháng 9 2018

Câu 4 : 

       Ta có : a+b+c=0

​​=> a+b=-c

Lại có : a3+b3=(a+b)3-3ab(a+b)

=> a3+b3+c3=(a+b)3-3ab(a+b)+c3

                    =-c3-3ab. (-c)+c3

                    =3abc

Vậy a3+b3+c3=3abc với a+b+c=0

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$a+b=c+d$

$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$

$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.

Đặt $\frac{a}{d}=\frac{c}{b}=k$

$\Rightarrow a=dk; c=bk$. Khi đó:

$a+b=c+d$

$\Leftrightarrow dk+b=bk+d$

$\Leftrightarrow k(d-b)=d-b$

$\Leftrightarrow (d-b)(k-1)=0$

$\Rightarrow d=b$ hoặc $k=1$.

Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.

$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

Nếu $k=1\Rightarrow a=d; b=c$

$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$a+b=c+d$

$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$

$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.

Đặt $\frac{a}{d}=\frac{c}{b}=k$

$\Rightarrow a=dk; c=bk$. Khi đó:

$a+b=c+d$

$\Leftrightarrow dk+b=bk+d$

$\Leftrightarrow k(d-b)=d-b$

$\Leftrightarrow (d-b)(k-1)=0$

$\Rightarrow d=b$ hoặc $k=1$.

Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.

$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

Nếu $k=1\Rightarrow a=d; b=c$

$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>(a-b)^2+(b-c)^2+(a-c)^2=0

=>a=b=c

27 tháng 6 2019

Lời giải :

a) \(VP=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3+b^3=VT\)( đpcm )

b) \(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2=VP\)( đpcm )

a)CM \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

VT = \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

VP = \(\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Ta thấy VP = VT

=> \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

b) CM \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

VT = \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

VP = \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=ac^2+2acbd+bd^2+ad^2-2abcd+bc^2=ac^2+ad^2+bd^2+bc^2\)Ta thấy VP = VT

=> \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)