Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,VT= (a+b).(a2-a.b+b2) +(a-b).(a2+a.b+b2)
=a3+b3+a3-b3
=2a3
=VP
=> điều phải chứng minh
b,VP= (a+b).((a-b)2+a.b)
=(a+b)(a2-2a.b+b2+a.b)
=(a+b)(a2-a.b+b2)
=a3+b3
=>điều phải chứng minh
a/ ta có vế trái = a3 + b3 + a3 - b3
= 2a3 = vế phải
b/ ta có vế phải = (a+b).(a2 - 2.a.b + b2 + a.b)
= (a+b).(a2 - ab + b2)
= a3 + b3 = vế trái
c/ ta có vế phải = (a2c2 + 2acbd + b2d2) + (a2d2 - 2adbc + b2c2)
= a2c2 + 2abcd +b2d2 + a2d2 - 2abcd + b2c2
= a2c2 + b2d2 + a2d2 + b2c2
= a2.(c2 + d2) + b2.(c2+ d2)
= (a2 + b2) . (c2 + d2) = vế trái
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{\left(b^2.k^2\right)+\left(d^2.k^2\right)}{b^2+d^2}\)
\(=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)
và \(\frac{ab}{cd}=\frac{bk.dk}{b.d}=k^2\)(2)
Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(đpcm)
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)
Dáu "=" xảy ra \(\Leftrightarrow\) \(x=y=z=1\)
a,b,c,d > 0 ta có:
- a < b nên a.c < b.c
- c < d nên c.b < d.b
Áp dụng tính chất bắc cầu ta được: a.c < b.c < b.d hay a.c < b.d (đpcm)
a2 + b2 + (a + b)2 = c2 + d2 + (c +d)2 => 2.(a2 + b2) + 2ab = 2.(c2 + d2) + 2cd
=> a2 + b2 + ab = c2 + d2 + cd (1)
+) a4 + b4 + (a + b)4 = (a2 + b2)2 - 2a2.b2 + (a + b)4 = [(a2 + b2)2 - a2.b2] + [(a + b)4 - a2.b2]
= (a2 + b2 - ab). (a2 + b2 + ab) + [(a + b)2 - ab].[(a+ b)2 + ab]
= (a2 + b2 - ab). (a2 + b2 + ab) + (a2 + b2 + ab). (a2 + b2 + 3ab) = (a2 + b2 + ab). [(a2 + b2 - ab) + (a2 + b2 + 3ab)]
= 2.(a2 + b2 + ab).(a2 + b2 + ab) = 2.(a2 + b2 + ab)2 (2)
Tương tự: c4 + d4 + (c+d)4 = 2. (c2 + d2 + cd)2 (3)
Từ (1)(2)(3) => đpcm
Câu 4 :
Ta có : a+b+c=0
=> a+b=-c
Lại có : a3+b3=(a+b)3-3ab(a+b)
=> a3+b3+c3=(a+b)3-3ab(a+b)+c3
=-c3-3ab. (-c)+c3
=3abc
Vậy a3+b3+c3=3abc với a+b+c=0
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>(a-b)^2+(b-c)^2+(a-c)^2=0
=>a=b=c
Lời giải :
a) \(VP=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3=VT\)( đpcm )
b) \(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2=VP\)( đpcm )
a)CM \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
VT = \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
VP = \(\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Ta thấy VP = VT
=> \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
b) CM \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
VT = \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
VP = \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=ac^2+2acbd+bd^2+ad^2-2abcd+bc^2=ac^2+ad^2+bd^2+bc^2\)Ta thấy VP = VT
=> \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
Biến đổi VT, ta được:
\(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2-a^2d^2-2abcd-b^2c^2\)
\(=a^2c^2+b^2d^2-a^2d^2-b^2c^2\)
\(=a^2\left(c^2-d^2\right)+b^2\left(d^2-c^2\right)=\left(c^2-d^2\right)\left(a^2-b^2\right)\)
Vậy...........
( a2 - b2). ( c2 - d2 ) = ( a.c + b.d)2 - ( a.d + b.c)2
Mình viết nhầm đề, các bạn giúp mình giải gấp nha !!!