K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

 

a,VT= (a+b).(a2-a.b+b2) +(a-b).(a2+a.b+b2

=a3+b3+a3-b3

=2a3

=VP

=> điều phải chứng minh

 

b,VP= (a+b).((a-b)2+a.b)

=(a+b)(a2-2a.b+b2+a.b)

=(a+b)(a2-a.b+b2)

=a3+b3

=>điều phải chứng minh

 

  

17 tháng 8 2015

a/ ta có vế trái = a+ b+ a- b3 
                     = 2a3 = vế phải
b/ ta có vế phải = (a+b).(a2 - 2.a.b + b2 + a.b)
                       = (a+b).(a2 - ab + b2
                       = a3 + b= vế trái
c/ ta có vế phải = (a2c2 + 2acbd + b2d2) + (a2d2 - 2adbc + b2c2)
                       = a2c2 + 2abcd +b2d2 + a2d2 - 2abcd + b2c2
                            
  = a2c2 + b2d2 + a2d2 + b2c2
                       = a2.(c2 + d2) + b2.(c2+ d2)
                       = (a2 + b2) . (c2 + d2) = vế trái
 

29 tháng 8 2018

a/ (a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2

13 tháng 7 2016

Biến đổi VT, ta được:

\(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2-a^2d^2-2abcd-b^2c^2\)

\(=a^2c^2+b^2d^2-a^2d^2-b^2c^2\)

\(=a^2\left(c^2-d^2\right)+b^2\left(d^2-c^2\right)=\left(c^2-d^2\right)\left(a^2-b^2\right)\)

Vậy...........

13 tháng 7 2016

( a2 - b2). ( c2 - d2 ) = ( a.c + b.d)2 - ( a.d + b.c)2

Mình viết nhầm đề, các bạn giúp mình giải gấp nha !!!

13 tháng 9 2015

ta có :a)     (a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2                                                                                                                      b)      (a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2=(a-b)2                                                                                Áp dụng:  (a-b)2=(a+b)2-4ab=72-4.12=1               (a+b)2=(a-b)2+4ab=202+4.3=412

13 tháng 9 2015

GG

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Câu 1:

a) \((a+b)^3-3ab(a+b)=a^3+3a^2b+3ab^2+b^3-3ab(a+b)\)

\(=a^3+b^3+3ab(a+b)-3ab(a+b)\)

\(=a^3+b^3\)

Áp dụng: \(a^3+b^3=(a+b)^3-3ab(a+b)=(-5)^3-3.6(-5)=-35\)

b) \((a-b)^3+3ab(a-b)\)

\(=a^3-3a^2b+3ab^2-b^3+3ab(a-b)\)

\(=a^3-b^3-3ab(a-b)+3ab(a-b)\)

\(=a^3-b^3\)

Áp dụng:

\(a^3-b^3=(a-b)^3+3ab(a-b)=(-5)^3+3(-6)(-5)=-35\)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Câu 2:

a) Vì \(x^2\geq 0, \forall x\Rightarrow A=4x^2+3\geq 4.0+3=3\)

Vậy GTNN của $A$ là $3$ tại $x^2=0$ hay $x=0$

b)

\(B=2x^2+2x+2xy+y^2+3=(x^2+2x+1)+(x^2+2xy+y^2)+2\)

\(=(x+1)^2+(x+y)^2+2\)

\((x+1)^2\geq 0; (x+y)^2\geq 0, \forall x,y\in\mathbb{R}\)

\(\Rightarrow B\geq 0+0+2=2\)

Vậy GTNN của $B$ là $2$ tại \(\left\{\begin{matrix} (x+1)^2=0\\ (x+y)^2=0\end{matrix}\right.\Leftrightarrow x=-1; y=1\)

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.

       

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Bài 1)

Áp dụng BĐT Bunhiacopxki ta có:

\(1=(a^2+b^2)(m^2+n^2)\geq (am+bn)^2\Rightarrow -1\leq am+bn\leq 1\)

Dấu bằng xảy ra khi \(\frac{a}{m}=\frac{b}{n}\) . Kết hợp với \(a^2+b^2=m^2+n^2=1\)

\(\Rightarrow \) dấu bằng xảy ra khi \(a=\pm m;b=\pm n\)

Bài 2)

Ta thấy:

\((ac-bd)^2\geq 0\Rightarrow a^2c^2+b^2d^2\geq 2abcd\Rightarrow (ac+bd)^2\geq 4abcd\)

\(\Leftrightarrow 4\geq 4cd\rightarrow cd\leq 1\Rightarrow 1-cd\geq 0\) (đpcm)

Dấu bằng xảy ra khi \(ac=bd=\pm 1\)\(cd=1\) ....

Bài 3)

Vế đầu:

\(\Leftrightarrow ab+bc+ac\leq a^2+b^2+c^2\)

Nhân $2$ và chuyển vế \(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\)

BĐT trên luôn đúng nên BĐT đầu tiên cũng đúng.

Vế sau:

\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)

Do đó BĐT sau cũng luôn đúng với mọi số thực $a,b,c$

Dấu bằng xảy ra khi $a=b=c$

21 tháng 3 2017

\(\left\{{}\begin{matrix}m^2+n^2=1\\a^2+b^2=1\end{matrix}\right.\) \(\Leftrightarrow\left(a^2+b^2\right)\left(m^2+n^2\right)=\left(am\right)^2+\left(an\right)^2+\left(bm\right)^2+\left(bn\right)^2=1\)\(\Leftrightarrow\left(am+bn\right)^2-\left[\left(ambn-\left(an\right)^2\right)+\left(ambn-\left(bm\right)^2\right)\right]=1\)\(\Leftrightarrow\left(am+bn\right)^2+\left[an\left(bm-an\right)\right]+\left[bm\left(an-bm\right)\right]=1\)

\(\Leftrightarrow\left(am+bn\right)^2-\left(bm-an\right)\left(an-bm\right)=1\)

\(\Leftrightarrow\left(am+bn\right)^2+\left(an-bm\right)^2=1\\ \)

\(\left(an-bm\right)^2\ge0\forall_{a,b,m,n}\Rightarrow\left(am+bn\right)^2\le1\)

\(\Rightarrow-1\le\left(am+bn\right)\le1\Rightarrow dpcm\)