Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=\dfrac{45}{9}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
c: Ta có: 10x=6y
nên x/3=y/5
Đặt x/3=y/5=k
=>x=3k; y=5k
Ta có: \(2x^2-y^2=-28\)
\(\Leftrightarrow2\cdot9k^2-25k^2=-28\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=6; y=10
TRường hợp 2: k=-2
=>x=-6; y=-10
\(A=\dfrac{x+y}{z}+1+\dfrac{x+z}{y}+1+\dfrac{y+z}{x}+1-3\)
\(A=\left(x+y+z\right)\left(\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)-3\)
\(A=0-3=-3\)
Theo de bai ta co: \(x=\dfrac{y^2}{z}\Rightarrow\dfrac{z}{x}=\dfrac{z^2}{y^2}\left(1\right)\)
Va \(y=\dfrac{z^2}{x}\left(2\right)\)
Tu (1),(2) suy ra y=z \(\Rightarrow x=y=z\)
suy ra A=1
Câu hỏi của Anh Tú Dương - Toán lớp 10 | Học trực tuyến
Từ \(xyzt=1\) ta có: \(\dfrac{1}{x^3\left(yz+zt+ty\right)}=\dfrac{xyzt}{x^3\left(yz+zt+ty\right)}=\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\)
Đánh giá tương tự ta có:
\(pt\Leftrightarrow\dfrac{yzt}{x^2\left(yz+zt+ty\right)}+\dfrac{xzt}{y^2\left(xz+zt+tx\right)}+\dfrac{xyt}{z^2\left(xy+yt+tx\right)}+\dfrac{xyz}{t^2\left(xy+yz+zx\right)}\ge3\left(yzt+xzt+xyt+xyz\right)=3yzt+3xzt+3xyt+3xyz\)
Ta sẽ chứng minh:
\(\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\ge3yzt\). Cộng theo vế rồi suy ra đpcm
T gần đi học r,có gì tối về giải full cho
mọi người giúp em vs