Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{x+\sqrt{x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)\(\ge\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Ta xét BĐT phụ: \(1+x^3+y^3\ge xy\left(x+y+z\right)\)
\(x^3+y^3\ge xy\left(x+y\right)+xyz-1\)
\(x^3+y^3-xy\left(x+y\right)\ge0\)
\(\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)
\(\left(x+y\right)\left(x-y\right)^2\ge0\)( Luôn đúng, vậy BĐT phụ đúng)
\(\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}=\sqrt{x+y+z}.\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3\sqrt[3]{xyz}}.\left(3\sqrt[3]{\dfrac{1}{\sqrt{x^2y^2z^2}}}\right)=3\sqrt{3}\)
GTNN của P là \(3\sqrt{3}\Leftrightarrow x=y=z=1\)
Ta có \(x^3+y^3\ge xy\left(x+y\right)\)
\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y+z\right)=xy\left(x+y+z\right)\)
Tương tự ta có
\(VT\ge\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}+\dfrac{\sqrt{yz\left(x+y+z\right)}}{yz}+\dfrac{\sqrt{zx\left(x+y+z\right)}}{zx}\)
\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)
\(=\sqrt{x+y+z}.\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\)
\(\ge\sqrt{3\sqrt[3]{xyz}}.\dfrac{3\sqrt[6]{xyz}}{1}=3\sqrt{3}\)
\("="\Leftrightarrow x=y=z=1\)
Ta có: \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)
\(VT=\dfrac{x}{1+yz}+\dfrac{y}{1+xz}+\dfrac{z}{1+xy}\)
\(=\dfrac{x^2}{x+xyz}+\dfrac{y^2}{y+xyz}+\dfrac{z^2}{z+xyz}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3xyz}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\dfrac{\left(x+y+z\right)\left(xy+yz+xz\right)}{3}}\)
\(=\dfrac{3\left(x+y+z\right)}{4}\). Cần chứng minh:
\(\dfrac{3\left(x+y+z\right)}{4}\ge\dfrac{3\sqrt{3}}{4}\Leftrightarrow x+y+z\ge\sqrt{3}\)
BĐT cuối đúng vì \(x+y+z\ge\sqrt{3\left(xy+yz+xz\right)}=\sqrt{3}\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)
Ps: nospoiler
Bài này cũng dễ mà:
Áp dụng BĐT Cô-si, ta có:
\(y+z+1\ge3\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)
\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)
Mà \(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)
Áp dụng BĐT Cauchy -Schwaz:
\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Mà:
\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)
\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)
Áp dụng BĐT Bunhicopski:
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)
\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1
Câu hỏi của Anh Tú Dương - Toán lớp 10 | Học trực tuyến