Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)
Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)
-------
Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)
\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)
\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)
\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)
Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)
Suy ra:
\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)
\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=\dfrac{45}{9}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
c: Ta có: 10x=6y
nên x/3=y/5
Đặt x/3=y/5=k
=>x=3k; y=5k
Ta có: \(2x^2-y^2=-28\)
\(\Leftrightarrow2\cdot9k^2-25k^2=-28\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=6; y=10
TRường hợp 2: k=-2
=>x=-6; y=-10
Áp dụng BĐT cauchy:
\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\ge\dfrac{9}{xy+yz+zx}\)
\(M\ge\dfrac{1}{x^2+y^2+z^2}+\dfrac{9}{xy+yz+xz}=\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+xz\right)}+\dfrac{7}{xy+yz+zx}\)Áp dụng BĐT cauchy-schwarz:
\(\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}\ge\dfrac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)
và \(\dfrac{7}{xy+yz+xz}\ge\dfrac{7}{\dfrac{1}{3}\left(x+y+z\right)^2}=21\)
\(\Rightarrow M\ge9+21=30\)
dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)
cô si cho đễ hiểu đi bn , cần gì phải cauchy s,. làm gì cho mệt
Bài 1:
Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min
Nếu chuyển tìm max thì em tìm như sau:
Áp dụng BĐT Cauchy_Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)
Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)
\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)
hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
\(A=\dfrac{x+y}{z}+1+\dfrac{x+z}{y}+1+\dfrac{y+z}{x}+1-3\)
\(A=\left(x+y+z\right)\left(\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)-3\)
\(A=0-3=-3\)