Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24
a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19
Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)
Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19
Lời giải:
Ta có:
\(M=n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)
\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)
\(=n(n+1)(n^2+5n+6)\)
\(=n(n+1)[n(n+2)+3(n+2)]\)
\(=n(n+1)(n+2)(n+3)\)
Trong 4 số nguyên liên tiếp $n,n+1,n+2,n+3$ có ít nhất một số chia hết cho $3$ nên \(M=n(n+1)(n+2)(n+3)\vdots 3(*)\)
Trong 4 số nguyên liên tiếp, bao giờ cũng có 2 số chẵn, một số lẻ. Trong 2 số chẵn liên tiếp bào giờ cũng có 1 số chia hết cho $2$, một số chia hết cho $4$ nên \(M=n(n+1)(n+2)(n+3)\vdots (2.4=8)(**)\)
Từ $(*)$ và $(**)$, mà $(3,8)=1$ nên $M\vdots (3.8=24)$
Ta có đpcm.
ta có: A= \(n^3-6n^2+11n-6\)
<=>A=\(n^3-n^2-5n^2+5n+6n-6\)
<=>A=\(n^2\left(n-1\right)-5n\left(n-1\right)+6\left(n-1\right)\)
<=>A=\(\left(n^2-5n+6\right)\left(n-1\right)\)
<=>A=\(\left(n-1\right)\left(n-2\right)\left(n-3\right)\)
Mặt khác: (n-1) ; (n-2) ; (n-3) là 3 số liên tiếp nên \(\left(n-1\right)\left(n-2\right)\left(n-3\right)\) là tích của 3 số liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3. mà 2 và 3 nguyên tố cùng nhau nên A chia hét cho (2.3)=6
\(\left(4x^2-7x-50\right)^2-16x^4-56x^3-49x^2\)
\(\text{Phân tích thành nhân tử}\)
\(\left(-4\right)\left(2x-5\right)\left(7x+25\right)\)
\(x^m+3.y-x^m+1.Y^3-x^3.y^m+1+xy^m+3\)
\(\text{Phân tích thành nhân tử}\)
\(-\left(x^3y^m-xy^m-y^3-3y-4\right)\)
Câu 3 ko hiểu >o<
B1: Giải:
\(n^4+6n^3+11n^2+6n\)
= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)
= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)
= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)
= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)
= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)
= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)
= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)
Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.
Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
t A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1)
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*)
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co:
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] =
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4)
nhận thấy A(k+1) là tích của số tự nhiên liên tiếp=> A(k+1) chia hết cho 24
=> A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).