K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

Áp dụng định lí Cê-va đảo

Kẻ tam giác ABC có AD,BE,CF là các đg trung tuyến

Dễ thấy: \(\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}=1\)

Vậy AD,CF,BE đồng quy

Dễ CM cê va bằng diện tích 

5 tháng 1 2018

Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

25 tháng 10 2017

DF//BC nhé

17 tháng 7 2018

1)Điều cần chứng minh : 3 đường trung tuyến của tam giác bất kỳ luôn đồng quy. 
Cho tam giác ABC, trung tuyến AM, lấy điểm G trên AM sao cho AG = 2GM, I là trung điểm AG. 
BG cắt AC tại N. Qua I, M kẻ các đường thẳng song song với BG cắt AC tại K,L (Bạn tự vẽ hình nhé) 
Theo định lý Talét suy ra AK=KN=NL=LC => AN = NC vậy BN là trung tuyến của tam giác ABC 
Chứng minh tương tự ta có nếu CG cắt AB tại P thì CP là trung tuyến của tam giác ABC 
Vậy 3 trung tuyến của tam giác đồng quy. 
2)Phần này đã được chứng minh trong sách giáo khoa 11 trang 44. Trong một số sách tham khảo thì mệnh đề trên được xem như tiên đề. 
3) Bạn không nói rõ là công thức cộng thế nào. Nếu là cos(a+b) SGK có chứng minh rồi bạn ạ. Còn nếu là cos x + cos y = 2cos [(x+y)/2]* cos[(x-y)/2] thì nó được suy ra từ công thức nhân khi ta đặt 
a+b=x và a-b=y trong công thức nhân. Công thức nhân được chứng minh bằng việc cộng hoặc trừ theo về công thức công cos(a+b) với cos(a-b). 
Học toán không chỉ tìm bài toán khó mà suy nghĩ những cái cơ bản cũng cho ta thêm kinh nghiệm, miễn ta yêu thích nó thì không thể nói là phí thời gian được.

7 tháng 8 2019

Mình có cách khác khá dễ nè:) Boul học hình ghê thật:) tới sin cos rồi á?

17 tháng 9 2020

Giả sử \(\Delta\)ABC có hai đường trung tuyến BE và CF vuông góc với nhau, AD là đường trung tuyến thứ ba. Ta cần chứng minh AD^2 = BE^2 + CF^2

Trên tia đối của tia EF lấy điểm K sao cho EF = FK

Tứ giác AKCF có hai đường chéo cắt nhau tại trung điểm E của mỗi đường nên AKCF là hình bình hành => AK//FC. Mà FC\(\perp\)BE nên BE\(\perp\)AK (*)

Ta có: F là trung điểm của AB, E là trung điểm của AC nên EF là đường trung bình của\(\Delta\)ABC => EF =  1/2BC và EF//BC hay EK//BD (1)

Mà BD = 1/2BC (gt) nên EF = BD => EK = BD (do EF = EK theo cách chọn điểm phụ)           (2)

Từ (1) và (2) suy ra EKDB là hình bình hành => EB // DK (**)

Từ (*) và (**) suy ra DK \(\perp\)AK => \(\Delta\)AKD vuông tại K => AK^2 + KD^2 = AD^2 (theo định lý Py-ta-go)

Mà AK = FC (do AKCF là hình bình hành) và KD = BE (do EKDB là hình bình hành) nên AD^2 = BE^2 + CF^2 (đpcm)