K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

b) Xét tứ giác AKHI có

\(\widehat{KAI}=90^0\)

\(\widehat{HIA}=90^0\)

\(\widehat{HKA}=90^0\)

Do đó: AKHI là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:

\(AI\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:

\(AK\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

29 tháng 8 2023

xàm vãi câu a) có 1 góc mà g-g

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạng với ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

13 tháng 6 2023

giải

tự vẽ hình nha 

a, xét △ ABC và △ HBA có 

góc B chung

góc BHA = góc BAC = 90 độ

➜ △ABC ∼ △HBA (g.g)

b, xét △CHM và △CKB có

góc C chung

góc CHM = góc CKB 

➜ △CHM ∼ △CKB (g.g)

c, xét △DHB và △CKB có

góc B chung 

góc BKC = góc BHD =  90 độ 

➜ △DHB∼△CKB (g.g)

vì △DHB∼△CKB 

➜DH/CK = HB/KB = DB/CB

xét △BKH và △BCD có 

góc B chung 

HB/KB = DB/CB (CMT)

➜△BKH ∼ △BCD

vì △BKH ∼ △BCD nên góc BKH = góc BCD (hai góc tương ứng )

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có

\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔKHB đồng dạng với ΔKAH

=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)

=>\(KH^2=KA\cdot KB\)

c: Ta có: ΔAHC vuông tại H

=>\(HC^2+HA^2=AC^2\)

=>\(HA^2=10^2-8^2=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)

BC=BH+CH

=4,5+8

=12,5(cm)

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)

10 tháng 9 2017

 Ta có: lấy N là trung điểm của EC ta có: Xét tam giác EHC có I là trung điểm EC 
O là trung điểm EH 
=> OI là đường turng bình của tam giác EHC => OI//HC mà HC vuông góc AH => OI vuông góc AH 
Xét tam giác AHI có EH vuông góc AI 
IO vuông góc AH 
=> AO là trường cao của tam giác AHI => AO vuông góc HI 
Xét tam giác BEC có H là trung điểm BC; I là trung điểm EC => HI là đường trung bình 
=> HI//BE mà HI vuông góc AO => BE cũng vuông góc AO

10 tháng 9 2017

Ta có : Lấy N là trung điểm của EC ta có : Xét tam giác EHC có I là trung điểm EC 

O là trung điểm của EH 

suy ra OI là đường trung bình của tam giác EHC suy ra OI // HC mà HC vuông góc Ah suy ra OI vuông góc vói Ah

Xét tam giác AHI có EH vuông góc AI 

IO vuông góc với AH

suy ra AO là đường cao của tam giác AHI suy ra AO vuông góc HI 

Xét tam giác BEC có H là trung điểm BC , I là trung điểm EC suy ra HI là đường trung bình 

suy ra HI // BE mà HI vuông góc AO suy ra BE vuông góc với AO

23 tháng 11 2022

Bạn đổi D thành M nha

Gọi I là trung điểm của KC

Xét ΔKHC có M,I lần lượt là trung điểm của KH,KC

nên MI là đường trung bình

=>MI//HC

=>MI vuông góc với AH

Xét ΔAHI có

IM,HK là các đường cao

IM cắt HK tại M

Do đó: M là trực tâm

=>AM vuông góc với HI

Xét ΔBKC có

CH/CB=CI/CK

nên HI//BK

=>AM vuông góc với BK

Bài 1:

a: Ta có: ΔBKC vuông tại K

mà KM là đường trung tuyến

nên KM=BC/2(1)

Ta có: ΔBHC vuông tại H

mà HM là đường trung tuyến

nên HM=BC/2(2)

Từ (1)và (2) suy ra MH=MK

hay ΔMHK cân tại M

b: Kẻ MN vuông góc với HK

=>N là trung điểm của HK

Xét hình thang CBDE có

M là trung điểm của BC

MN//DB//EC

DO đó: N là trung điểm của DE

=>DK=HE

14 tháng 12 2023

a: Xét tứ giác ANMP có

\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)

=>ANMP là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

MN//AC

Do đó: N là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MP//AB
Do đó: P là trung điểm của AC

Xét ΔABC có

N,P lần lượt là trung điểm của AB,AC

=>NP là đường trung bình của ΔABC

=>NP//BC và NP=BC/2

=>NP//MH

Ta có: ΔHAC vuông tại H

mà HP là đường trung tuyến

nên HP=AP

mà AP=MN(ANMP là hình chữ nhật)

nên HP=MN

Xét tứ giác MHNP có MH//NP
nên MHNP là hình thang

Hình thang MHNP có MN=HP

nên MHNP là hình thang cân