K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

a) Ta có:

72 đồng dư với -1 (mod 50)

=> (72)1007 đồng dư với (-1)1007 (mod 50)

=> 72014 đồng dư với -1 (mod 50)

=> 72014 + 1 đồng dư với -1 + 1 (mod 50)

=> 72014 + 1 đồng dư với 0 (mod 50)

=> 72014 + 1 chia hết cho 50

19 tháng 7 2016

a) bài này xét chữ số tận cùng nhé

\(12^{2000}-2^{1000}=\left(2^2\right)^{1000}-\left(2^2\right)^{500}=4^{1000}-4^{500}=\left(...6\right)-\left(...6\right)=\left(...0\right)\) chia hết cho 10 

=>122000-21000 chia hết cho 10 (đpcm)

b) chưa nghĩ ra :(

19 tháng 7 2016

uk=)!!!

9 tháng 8 2017

4. \(A=\left(a^{2012}-a^{2008}\right)+\left(b^{2012}-b^{2008}\right)+\left(c^{2012}-c^{2008}\right)\)

\(=a^{2008}\left(a^4-1\right)+b^{2008}\left(b^4-1\right)+c^{2008}\left(c^4-1\right)\)

\(=a^{2008}\left(a^2-1\right)\left(a^2+1\right)+b^{2008}\left(b^2-1\right)\left(b^2+1\right)+c^{2008}\left(c^2-1\right)\left(c^2+1\right)\)

\(=a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)+b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)+c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\)

Dễ thấy a-1, a, a+1 là 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2, một số chia hết cho 3 \(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

Tương tự đối với b và c ta suy ra \(A⋮6\) (1)

Xét các số dư của a cho 5

- Nếu \(a⋮5\) thì \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)

- Nếu a chia 5 dư 1 thì \(\left(a-1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)

- Nếu a chia 5 dư 2 hoặc 3 thì \(\left(a^2+1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)

- Nếu a chia 5 dư 4 thì \(\left(a+1\right)⋮5\) nên \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)

Như vậy \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\) \(\forall a\in Z_+\)

Tương tự \(\left[b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)\right]⋮5\)

\(\left[c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\right]⋮5\)

Do đó \(A⋮5\) (2)

Từ (1) và (2) suy ra \(A⋮30\)

5 tháng 1 2015

Câu 1 thì mình biết làm đó.

Vì 2013 chia 7 dư 4 nên 20132012 chia 7 cũng dư 4

 

30 tháng 8 2016

chắc là 2 đấy

5 tháng 12 2018

Nguyễn Việt Lâm

Chỉ em câu này với ạ

NV
5 tháng 12 2018

Đặt \(\left\{{}\begin{matrix}x+2012=a\\2y-2013=b\\3z+2014=c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}P=a^5+b^5+c^5\\S=a+b+c\end{matrix}\right.\)

Ta có:

\(P-S=a^5-a+b^5-b+c^5-c=a\left(a^4-1\right)+b\left(b^4-1\right)+c\left(c^4-1\right)\)

\(\Rightarrow P-S=\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)+\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)+\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\)

Nhận thấy \(\left(a-1\right)a\left(a+1\right);\left(b-1\right)b\left(b+1\right);\left(c-1\right)c\left(c+1\right)\) đều là tích của 3 số nguyên liên tiếp =>đều chia hết cho 3

\(\Rightarrow P-S\) luôn chia hết cho 3

\(\Rightarrow\) Nếu P chia hết cho 3 thì S chia hết cho 3 và ngược lại (đpcm)

9 tháng 8 2016

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên

       * Vậy A chia hết cho 27

9 tháng 8 2016

Đây là toán lớp 7 chứ toán 8 gì hum