K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

Vì số đư của phép chia F(x) cho nhị thức g(x)=x-1 chính bằng F(1) (theo định lý bezout) ,nên số dư của phép chia là

F(1)= 1+2-3-4+5+6-....-2012

=-2012

Vậy số dư của phép chia f(x) cho nhị thức g(x)=x-1 là -2012

16 tháng 11 2022

a: =>3x^3-x^2+3x^2-x-6x+2+m-2 chia hết cho 3x-1

=>m-2=0

=>m=2

b: =>\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2+3x-1-6x+a+1⋮x^2+3x-1\)

=>-6x+a+1=0

=>6x=a+1

=>x=(a+1)/6

3 tháng 11 2019

Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

-1 và 1 là hai nghiệm của đa thức \(x^2-1\)

Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)

Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)

Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)

Vậy a = -2, b = 1

14 tháng 11 2022

a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)

=>a-10=0

=>a=10

b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)

=>2-a=0 và b-a+1=0

=>a=2; b=a-1=2-1=1

29 tháng 9 2017

bài 1

x2-2x-3

=x2+x-3x-3

=x(x+1)-3(x+1)

=(x-3)(x+1)

29 tháng 9 2017

bài 2

b) x2(x2+1)-x2-1=0

=>x2(x2+1)-(x2+1)=0

=>(x2+1)(x2-1)=0

=>x2+1=0 hoặc x2-1=0

=>x2=-1 (loại)hoặc x2=1

=>x=\(\pm\) 1

vậy x=\(\pm\)1