K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Bài 1:

TH1: A, D nằm cùng phía với BC

Góc α: Góc giữa C, A, B Góc α: Góc giữa C, A, B Góc β: Góc giữa C, D, B Góc β: Góc giữa C, D, B Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng g: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, D] Đoạn thẳng j: Đoạn thẳng [D, C] Đoạn thẳng k: Đoạn thẳng [A, D] Đoạn thẳng l: Đoạn thẳng [D, I] Đoạn thẳng m: Đoạn thẳng [A, A'] Đoạn thẳng n: Đoạn thẳng [D, A'] Đoạn thẳng p: Đoạn thẳng [A', C] B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I

Gọi I là trung điểm của BC. Khi đó theo tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có:

IB = ID = IC

Vậy nên \(\widehat{BDC}=\widehat{BDI}=\frac{\widehat{DIC}}{2}\)  (Tính chất góc ngoài)   (1)

Trên tia đối của tia IA lấy điểm A' sao cho I là trung điểm AA'.

Tam giác ABC vuông nên ta cũng có IB = IA = IC. Vậy thì IB = IA = IC = IA' hay tam giác ACA' vuông tại C.

Từ đó tương tự như bên trên ta có: 

\(\widehat{DAI}=\frac{\widehat{DIA'}}{2};\widehat{CAI}=\frac{\widehat{CIA'}}{2}\)

\(\Rightarrow\widehat{DAC}=\widehat{DAI}-\widehat{CAI}=\frac{\widehat{DIA'}-\widehat{CIA'}}{2}=\frac{\widehat{DIC}}{2}\)   (2)

Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DBC}\)

Hoàn toàn tương tự ta có: \(\widehat{ADB}=\widehat{ACB}\)

TH2: A, D khác phía với BC

Góc β: Góc giữa C, D, B Góc β: Góc giữa C, D, B Góc γ: Góc giữa B, A, C Góc γ: Góc giữa B, A, C Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng g: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, D] Đoạn thẳng j: Đoạn thẳng [D, C] Đoạn thẳng k: Đoạn thẳng [A, D] Đoạn thẳng l: Đoạn thẳng [D, I] Đoạn thẳng m: Đoạn thẳng [A, A'] Đoạn thẳng n: Đoạn thẳng [D, A'] Đoạn thẳng p: Đoạn thẳng [A', C] B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I

Tương tự như TH1:

Ta có: \(\widehat{DBC}=\frac{\widehat{DIC}}{2}\)

\(\widehat{DAC}=\widehat{DAA'}+\widehat{A'AC}=\frac{\widehat{DIA'}+\widehat{A'IC}}{2}=\frac{\widehat{DIC}}{2}\)

Vậy nên \(\widehat{DAC}=\widehat{DBC}\)

Tương tự \(\widehat{ADB}=\widehat{ACB}\)

1 tháng 3 2018

Bài 1:

Do BE chia tam giác ABC thành hai tam giác có tỉ số đồng dạng là \(\sqrt{3}\) nên có thể xảy ra các trường hợp sau:

\(\left(1\right)\Delta AEC\sim\Delta EBC;\left(2\right)\Delta AEC\sim\Delta CBE;\left(3\right)\Delta AEC\sim\Delta CEB;\left(4\right)\Delta AEC\sim\Delta ECB\)

(Vì trong các trường hợp còn lại thì tỉ số đồng dạng là \(\frac{EC}{EC}=1\) )

Vì góc \(\widehat{AEC}>\widehat{BCE}\) nên không xảy ta trường hợp (1) và (2); Vì \(\widehat{BEC}>\widehat{EAC}\)nên không xảy ta trường hợp (4)

Do đó chỉ có thể xảy ra trường hợp (3) hay \(\Delta AEC\sim\Delta CEB\Rightarrow\widehat{AEC}=\widehat{BEC}\) và \(\frac{EC}{EB}=\frac{AE}{CE}=\sqrt{3}\)

\(\Rightarrow\widehat{AEC}=\widehat{CEB}=90^o\)

Vậy nên tam giác AEC vuông tại E và \(\frac{AE}{CE}=\sqrt{3}\Rightarrow\widehat{ACE}=60^o;\widehat{CAE}=30^o\)

Vậy tam giác ECB vuông tại E và \(\frac{EC}{EB}=\sqrt{3}\Rightarrow\widehat{CBE}=60^o;\widehat{ECB}=30^o\)

Do đó \(\widehat{CAB}=30^o;\widehat{CBA}=60^o;\widehat{ACB}=90^o.\)

Câu 1:Cho \(\Delta ABC\)có \(\widehat{A}\)=\(40^o\);\(\widehat{B}\)=\(80^o\)và \(\Delta DEF\)có \(\widehat{A'}\)=\(40^o\);\(\widehat{D}=60^o\).Khẳng định nào sau đây đúng?A.\(\Delta ABC\)đồng dạng \(\Delta DEF\)                                             B.\(\Delta FED\)đồng dạng \(\Delta CBA\)C.\(\Delta ACB\)đồng dạng \(\Delta EFD\)                                             D. \(\Delta DFE\)đồng...
Đọc tiếp

Câu 1:Cho \(\Delta ABC\)có \(\widehat{A}\)=\(40^o\);\(\widehat{B}\)=\(80^o\)và \(\Delta DEF\)có \(\widehat{A'}\)=\(40^o\);\(\widehat{D}=60^o\).Khẳng định nào sau đây đúng?

A.\(\Delta ABC\)đồng dạng \(\Delta DEF\)                                             B.\(\Delta FED\)đồng dạng \(\Delta CBA\)

C.\(\Delta ACB\)đồng dạng \(\Delta EFD\)                                             D. \(\Delta DFE\)đồng dạng \(\Delta CBA\)

Câu 2:\(\Delta A'B'C'\)đồng dạng \(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\). Gọi AM, A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\). Biết A'M'=15cm, độ dài AM là:

A.6cm                       B.10cm                            C.12cm                                  D.22,5cm

Câu 3:Chọn phát biểu đúng trong các phát biểu sau:

A.Hai tam giác cân thì đông dạng với nhau

B.Hai tam giác đồng dạng thì bằng nhau

C.Hai tam giác vuông cân thì đông dạng với nhau

D.Hai tam giác vuông bất kì thì luôn đồng dạng

Câu 4:\(\Delta ABC\)đồng dạng \(\Delta DEF\)và \(\frac{^SABC}{^SDEF}=\frac{4}{9}\). Tỉ số đồng dạng của chúng là:

A.3                               B.\(\frac{1}{2}\)                                  C.\(\frac{1}{4}\)                                   D.\(\frac{2}{3}\)

Câu 5:Cho \(\Delta ABC\)đồng dạng \(\Delta MNP\)sao cho \(\frac{^SABC}{^SMNP}=9\). Ta có:

A.\(\frac{AB}{MN}=9\)                                B.\(\frac{AB}{MN}=\frac{1}{9}\)                         C.\(\frac{AB}{MN}=3\)                             D.\(\frac{AB}{MN}=\frac{1}{3}\)                                

2
20 tháng 5 2019

Câu 2: D 22,5

Câu 3:C Hai tam giác vuông cân thì luôn đồng dạng với nhau

Câu 4: D \(\frac{2}{3}\)

Câu 5: C \(\frac{AB}{MN}=3\)

20 tháng 5 2019

Câu 1 đề bài sai

24 tháng 3 2020

Ta có

\(\Delta A'B'C'~\Delta A"B"C"\)theo tỉ số đồng dạng \(k_1\Rightarrow A'B'=k_1A"B"\)

\(\Delta A"B"C"~\Delta A'B'C\)theo tỉ số \(k_2=>A"B"=k_2A"B"=>AB=\frac{A"B"}{k_2}\)

từ đó suy ra

\(\frac{A'B'}{AB}=\frac{k_1A"B"}{\frac{A"B"}{k_2}}=k_1k_2\Leftrightarrow\Delta A'B'C~\Delta ABC\)theo tỉ số \(k_1k_2\)

Trắc nghiệm1.\(\Delta A'B'C'\)~ \(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\).Gọi AM,A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\).Biết A'M'=15cm,độ dài AM là:A.6cm           B.10cm               C.12cm             D.22,5cm2.Chọn phát biểu đúng trong các phát biểu sau:A.Hai tam giác cân thì đồng dạng với nhauB.Hai tam giác đồng dạng thì bằng nhauC.Hai tam giác vuông...
Đọc tiếp

Trắc nghiệm

1.\(\Delta A'B'C'\)\(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\).Gọi AM,A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\).Biết A'M'=15cm,độ dài AM là:

A.6cm           B.10cm               C.12cm             D.22,5cm

2.Chọn phát biểu đúng trong các phát biểu sau:

A.Hai tam giác cân thì đồng dạng với nhau

B.Hai tam giác đồng dạng thì bằng nhau

C.Hai tam giác vuông cân thì đồng dạng với nhau

D.Hai tam giác vuông bất kì thì luôn đồng dạng

3.\(\Delta ABC\)\(\Delta DEF\)và \(\frac{S_{ABC}}{S_{DEF}}\)=\(\frac{4}{9}\).Tỉ số đồng dạng của chúng là:

A.3            B.\(\frac{1}{2}\)                  C.\(\frac{1}{4}\)            D.\(\frac{2}{3}\)

4.Cho \(\Delta ABC\)\(\Delta MNP\)sao cho \(\frac{S_{ABC}}{S_{MNP}}\)=9.Ta có:

A.\(\frac{AB}{MN}\)=9          B.\(\frac{AB}{MN}\)=\(\frac{1}{9}\)            C.\(\frac{AB}{MN}\)=3             D.\(\frac{AB}{MN}\)=\(\frac{1}{3}\)

0
TAM GIÁC ĐỒNG DẠNG 1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC . b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC . 2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\) 3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây: A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và...
Đọc tiếp

TAM GIÁC ĐỒNG DẠNG

1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC .

b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC .

2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

b) Cho \(\Delta ABC\) có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

5. a) Cho \(\Delta DEF\sim\Delta ABC\) theo tỉ số đồng dạng k = 2. Tìm tỉ số \(\frac{S_{DÈF}}{S_{ABC}}\)

b) Cho \(\Delta DEF\)\(\sim\Delta ABC\) theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số \(\frac{S_{DEF}}{S_{ABC}}\)

6. Cho \(\Delta ABC.\)Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho \(\frac{AD}{AB}=\frac{AE}{AC}.\)Kết luận nào sai

A. \(\Delta ADE\sim\Delta ABC\) B. DE//BC C. \(\frac{AE}{AD}=\frac{AC}{AB}\) D. \(\Delta ADE=\Delta ABC\)

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.\(\Delta ABC\sim\Delta DEF\) B. \(\Delta ABC\sim\Delta EDF\)

C. \(\Delta ABC\sim\Delta DFE\) D.\(\Delta ABC\sim\Delta FED\)

giải giúp mình với! Mình cần gấp

1

TAM GIÁC ĐỒNG DẠNG

1, a) Tỉ số hai đoạn thẳng AB và AC : \(\frac{AB}{AC}=\frac{6}{15}\)

b) Tỉ số hai đoạn thẳng AB và AC . : \(\frac{AB}{AC}=\frac{6}{18}=\frac{1}{3}\)

2, ΔMNP ~ ΔABC thì : \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

Bạn ơi D ở đâu vậy ?

b) Cho ΔABCΔABC có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

Xét \(\Delta ABC\) có AD là phân giác

\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow BD=\frac{AB.CD}{AC}=3cm\)

5. a) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k = 2. Tìm tỉ số SDÈFvà SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=2^2=4\)

b) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số SDEF và SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

6. Cho ΔABC..Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho AD/AB=AE/AC Kết luận nào sai

A. ΔADE∼ΔABC B. DE//BC

C. AE/AD=AC/AB D. ΔADE=ΔABC

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.ΔABC∼ΔDEF B. ΔABC∼ΔEDF

C. ΔABC∼ΔDFE D.ΔABC∼ΔFED

14 tháng 5 2019

cảm ơn bạn nhiều nha