\(\widehat{A}=60^0;AB=6cm,AC=9cm\), (h.24)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

ABABABA′B′ = BCBCBCB′C′= CACACAC′A′= 3/2

=> ∆ABC ∽ ∆A'B'C'

b) CABCCABCCABCCA′B′C′= 3/2

22 tháng 4 2017

a)Xét \(\Delta ABC\) và \(\Delta A'B'C'\) có:

\(\dfrac{AB}{A'B'}=\dfrac{BC}{B'C'}=\dfrac{AC}{A'C'}\)

\(\Rightarrow\Delta ABC\)\(\Delta A'B'C'\)(c.c.c)

b)Từ câu a và áp dụng tính chất tỉ lệ thức ta có:

\(\dfrac{AB}{A'B'}=\dfrac{BC}{B'C'}=\dfrac{AC}{A'C'}=\dfrac{AB+BC+AC}{A'B'+B'C'+A'C'}=\dfrac{3}{2}\)

mà \(C_{ABC}=AB+BC+AC\)

\(C_{A'B'C'}=A'B'+B'C'+A'C'\)

Vậy tỉ số chu vi của \(\Delta ABC\) và \(\Delta A'B'C'\)là:

\(\dfrac{C_{ABC}}{C_{A'B'C'}}=\dfrac{3}{2}\)

12 tháng 5 2017

D

12 tháng 5 2017

xét tam giác AHB và tam giác CHA có

góc H = 90 độ

AH là cạnh chung

góc B = góc C (kề bù)

suy ra tam giác AHB đồng dạng tam giác CHA( G.C.G)

\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH\cdot AH=HB\cdot HC\)

\(\Rightarrow AH^2=HB\cdot HC\)

22 tháng 4 2017

Giải bài 49 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

a) Chứng minh AHAHAH′AH = BCBCB′C′BC

Vì B'C' // với BC => BCBCB′C′BC = ABABAB′AB (1)

Trong ∆ABH có BH' // BH => AHAHAH′AH = ABBCAB′BC (2)

Từ 1 và 2 => BCBCB′C′BC = AHAHAH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 1313 AH

BCBCB′C′BC = AHAHAH′AH = 1313 => B'C' = 1313 BC

=> SAB’C’= 1212 AH'.B'C' = 1212.1313AH.1313

21 tháng 2 2018

a) Chứng minh AH′AHAH′AH = B′C′BCB′C′BC

Vì B'C' // với BC => B′C′BCB′C′BC = AB′ABAB′AB (1)

Trong ∆ABH có BH' // BH => AH′AHAH′AH = AB′BCAB′BC (2)

Từ 1 và 2 => B′C′BCB′C′BC = AH′AHAH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 1313 AH

B′C′BCB′C′BC = AH′AHAH′AH = 1313 => B'C' = 1313 BC

=> SAB’C’= 1212 AH'.B'C' = 1212.1313AH.1313BC

=>SAB’C’= (1212AH.BC)1919

mà SABC= 1212AH.BC = 67,5 cm2

Vậy SAB’C’= 1919.67,5= 7,5 cm2