K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

s chia hết cho 25 vì trong thừa số của s có 25 đó là  5^2

s không chia hết cho 31 vì trong thừa số của s không có 31

29 tháng 9 2017

a) \(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(=2.5+2^5.5+...+2^{97}.5\)

\(=5\left(2+2^5+...+2^{97}\right)\) chia hết cho 5 (1)

b)\(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)\(=2\left(1+2^2+2^4+...+2^{98}\right)\) chia hết cho 2 (2)

Từ (1) và (2) và (2;5)=1 => S chia hết cho 2.5=10 

30 tháng 9 2017

cho mình hỏi bạn lấy 2.{1+22 }+25 [1+22 ]+.....+297 [1+22 ] ở đâu ra

15 tháng 9 2015

a) 942^60 - 351^37 chia hết cho 5 
2^1 có c/số tận củng là 2 
2^2 có c/số tận củng là 4 
2^3 có c/số tận củng là 8 
2^4 có c/số tận củng là 6 
2^5 có c/số tận củng là 2 
................................ 
=>Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6) 
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6 
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1) 
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5 
=>942^60 - 351^37 chia hết cho 5 
b/ giải thích tương tự câu a ta có 
99^5 có c/số tận cùng là: 9 
98^4 có c/số tận cung là: 6 
97^3 có c/số tận cùng là: 3 
96^2 có c/số tận cùng là: 6 
=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0 
vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)

16 tháng 12 2014

Số số hạng: (99-0):1+1=99(số hạng)

1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2)      [vì có 99 số hạng chia hết cho 3]

                          =31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.