K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Cho P(x) =x3 -3mx +m2

Q(x)= x2 +(3m +2) x+m2

Tìm giá trị của m sao cho P(-1) = Q(2)

P(-1) = (-1)3 - 3m.(-1) + m2 = -1 + 3m + m2

Q(2) = 22 + ( 3.m + 2) . 2 + m2 = 8 + 6m + m2

P(-1) = Q(2) \(\Rightarrow\) -1 + 3m + m2 = 8 + 6m + m2

\(\Rightarrow\) -1 + 3m = 8 + 6m + m2 - m2

\(\Rightarrow\) -1 + 3m = 8 + 6m

\(\Rightarrow\) 3m - 6m = 1+8

=> -3m = 9

=> m = -3

Vậy m= -3 thì P(-1) = Q(2)

22 tháng 3 2017

P= \(x^{2y5}-3y^3+3x^3-x^3y-2015\)

22 tháng 3 2017

P +Q =0 => P = -Q = x2y5 - 3y3 + 3x3 - x3y -2015

27 tháng 3 2017

\(\left\{{}\begin{matrix}P\left(x\right)=x+x^2-x^3+2x^3+2=x^3+x^2+x+2\\Q\left(x\right)=1+3x-x^2-4x+x^3=x^3-x^2-x+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}P\left(x\right)+Q\left(x\right)=2x^3+3\\P\left(x\right)-Q\left(x\right)=2x^2+2x+1\end{matrix}\right.\)

27 tháng 3 2017

tham khảo bài mk nha!

a) P(x) = (2x3 - x3) + x2 + x +2

= x3 +x2 +x +2

Q(x) = x3 - x2 +(-4x + 3x) +1

= x3 - x2 - x +1

b) ta có x = -2

\(\Rightarrow\) P(-2) = (-2)3 + (-2)2 + (-2) + 2

= -8 + 4 + (-2) +2

= -4

5 tháng 3 2017

\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0

5 tháng 3 2017

thank you!!!!!!yeu

23 tháng 2 2017

Bạn tham khảo nha:

M=x2y-xy2-5x+5y-12

M=xy(x-y)-(5x-5y)-12

M=5(x-y)-5(x-y)-12

M=0-12

M=-12

Chúc bạn học tốt nha!

23 tháng 2 2017

Ta có: \(M=x^2y-xy^2-5x+5y-12\)

\(\Rightarrow M=x\times x\times y-x\times y\times y-5x+5y-12\)

\(\Rightarrow M=x\times5-5\times y-5x+5y-12\)

\(\Rightarrow M=\left(x\times5-5x\right)-\left(5\times y-5y\right)-12\)

\(\Rightarrow M=-12\)

Vậy khi \(xy=5\) thì \(M=-12\).

1. a, Ta có: \(2^{24}=2^{3^8}=8^8\)

Lại có: \(3^{16}=3^{2^8}=9^8\)

\(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)

b, Ta có: \(5^{300}=5^{3^{100}}=125^{100}\)

Lại có: \(3^{500}=3^{5^{100}}=243^{100}\)

\(125^{100}< 243^{100}\Rightarrow5^{300}< 3^{500}\)

c, Ta có: \(2^{700}=2^{7^{100}}=128^{100}\)

Lại có: \(5^{300}=5^{3^{100}}=125^{100}\)

\(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)

d, Ta có: \(2^{400}=2^{2^{200}}=4^{200}\)

\(\Rightarrow2^{400}=4^{200}\)

e, Ta có: \(99^{20}=99^{2^{10}}=9801^{10}\)

\(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

25 tháng 7 2017

Bài 1:

a) Ta có: 224 = (23)8 = 88 ; 316 = (32)8 = 98

Vì 8 < 9 nên 88 < 98

Vậy 224 < 316.

b) Ta có: 5300 = (53)100 =125100 ; 3500 = (35)100 = 243100

Vì 125 < 243 nên 125100 < 243100

Vậy 5300 < 3500.

c) Ta có: 2700 = (27)100 = 128100; 5300 = (53)100 = 125100

Vì 128 > 125 nên 128100 > 125100

Vậy 2700 > 5300.

d) (làm tương tự)

Vậy 2400 = 4200.

e) (tương tự)

Vậy 9920 < 999910.

f) Ta có: 321 = 320. 3 = 910. 3 ; 231 = 230. 3 = 810. 2

Vì 910 > 810 ; 3 > 2

Nên 910. 3 > 810. 2

Vậy 321 > 231.

Bài 2: phương trình dễ ợt :v

14 tháng 8 2017

\(A=\dfrac{4^2}{1.3}+\dfrac{4^2}{3.5}+\dfrac{4^2}{5.8}+...+\dfrac{4^2}{45.47}.\dfrac{1-3-5-...-49}{8}\)

\(A=4\left(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.8}+...+\dfrac{4}{45.47}\right).\dfrac{1-3-5-...-49}{8}\)\(A=4\left[2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{45}-\dfrac{1}{47}\right)\right].\dfrac{1-3-5-...-49}{8}\)\(A=8\left(1-\dfrac{1}{47}\right).\dfrac{1-3-5-...-49}{8}\)

\(A=8\left(1-\dfrac{1}{47}\right).\dfrac{-623}{8}\)

\(A=\dfrac{368}{47}.\dfrac{-623}{8}=\dfrac{-28658}{47}\)

15 tháng 3 2017

a/ \(\left(4x^2y^3\right)\left(x^ny^7\right)=4x^5y^{10}\)

\(\Leftrightarrow4x^{2+n}y^{3+7}=4x^5y^{10}\)

\(\Rightarrow2+n=5\Rightarrow n=3\)

Vậy \(n=3\)

b/ \(\left(-7x^4y^m\right)\left(-5x^ny^4\right)=35x^9y^{15}\)

\(\Leftrightarrow35x^{4+n}y^{m+4}=35x^9y^{15}\)

\(\Rightarrow\left[{}\begin{matrix}4+n=9\\m+4=15\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=5\\m=11\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}m=11\\n=5\end{matrix}\right.\)

15 tháng 3 2017

a) \(\left(4x^2\times y^3\right)\left(x^n\times y^7\right)=4x^5y^{10}\)

\(\Rightarrow4\times\left(x^2\times x^n\right)\times\left(y^3\times y^7\right)=4x^5y^{10}\)

\(\Rightarrow4x^{2+x}y^{10}=4x^5y^{10}\)

\(\Rightarrow x^{2+n}=x^5\)

\(\Rightarrow2+n=5\)

\(\Rightarrow n=5-2\)

\(\Rightarrow n=3\)

Vậy \(n=3\).

b) \(\left(-7x^4y^m\right)\left(-5x^ny^4\right)=35x^9y^{15}\)

\(\Rightarrow\left[\left(-7\right)\times\left(-5\right)\right]\times\left(x^4\times x^n\right)\times\left(y^m\times y^4\right)=35x^9y^{15}\)

\(\Rightarrow35x^{4+n}y^{m+4}=35x^9y^{15}\)

\(\Rightarrow\left\{{}\begin{matrix}x^{4+n}=x^9\\y^{m+4}=y^{15}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4+n=9\\m+4=15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n=9-4\\m=15-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n=5\\m=9\end{matrix}\right.\)

Vậy \(m=9\)\(n=5\).

19 tháng 1 2017

\(7\left(x-2004\right)^2=23-y^2\)

\(\Rightarrow7\left(x-2004\right)^2+y^2=23\left(1\right)\)

\(y^2\ge0\) nên \(\left(x-2004\right)^2\le\frac{23}{7}\) suy ra \(\left[\begin{matrix}\left(x-2004\right)^2=0\\\left(x-2004\right)^2=1\end{matrix}\right.\)

*)Xét \(\left(x-2004\right)^2=0\) thay vào \((1)\) ta có: \(y^2=23\) (loại)

*)Xét \((x-2004)^2=1\) thay vào \((1)\) ta có \(y^2=16\)

Từ đó ta tìm được \(\left[\begin{matrix}\left\{\begin{matrix}x=2005\\y=4\end{matrix}\right.\\\left\{\begin{matrix}x=2003\\y=4\end{matrix}\right.\end{matrix}\right.\)

19 tháng 1 2017

cảm ơn bạn nhiều lắm!haha

25 tháng 3 2017

a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1

P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)

P = x2 – y2 + 3y2 – 1 - x2 + 2y2

P = x2 – x2 – y2 + 3y2 + 2y2 – 1

P = 4y2 – 1.

Vậy P = 4y2 – 1.

b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5

Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)

Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz

Q = 7x2 – 4xyz + xy + 5

Vậy Q = 7x2 – 4xyz + xy + 5.

21 tháng 3 2017

a) P+(x2-2y2)= x2-y2+3y2-1

P =(x2-y+3y2-1)-(x2-2y2)

= x2-y+3y2-1-x2+2y2

=(x2-x2)-(y-3y2-2y2)-1

= -4y2-1

b) Q-(5x2-xyz) = xy+2x2-3xyz+5

Q =(xy+2x2-3xyz+5)+(5x2-xyz)

=xy+2x2-3xyz+5+5x2-xyz

=(2x2+5x2)-(3xyz+xyz)+xy+5

=7x2-4xyz+xy+5

Có làm sai mong bạn thông cảm cho!hehe