Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
a) \(2x^2-4x+7\)
\(=2\left(x^2-2x+\dfrac{7}{2}\right)\)
\(=2\left(x^2-x-x+\dfrac{7}{2}\right)\)
\(=2\left(x^2-x-x+1+\dfrac{5}{2}\right)\)
\(=2\left[\left(x-1\right)^2+\dfrac{5}{2}\right]\)
\(=2\left(x-1\right)^2+5\)
Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+\dfrac{5}{2}\ge\dfrac{5}{2}>0\)
\(\Rightarrow\) đt vô nghiệm.
Mấy câu kia cũng tách tương tự.
" Giữ nguyên hạng tử bậc hai chia đội hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức"
Chúc bạn học tốt!!!
Theo mình nghĩ thì đề thiếu là tam giác ABC vuông tại A nhé!
Bạn xem lại đề!:)
1. a, Ta có: \(2^{24}=2^{3^8}=8^8\)
Lại có: \(3^{16}=3^{2^8}=9^8\)
Vì \(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
b, Ta có: \(5^{300}=5^{3^{100}}=125^{100}\)
Lại có: \(3^{500}=3^{5^{100}}=243^{100}\)
Vì \(125^{100}< 243^{100}\Rightarrow5^{300}< 3^{500}\)
c, Ta có: \(2^{700}=2^{7^{100}}=128^{100}\)
Lại có: \(5^{300}=5^{3^{100}}=125^{100}\)
Vì \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)
d, Ta có: \(2^{400}=2^{2^{200}}=4^{200}\)
\(\Rightarrow2^{400}=4^{200}\)
e, Ta có: \(99^{20}=99^{2^{10}}=9801^{10}\)
Vì \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
Bài 1:
a) Ta có: 224 = (23)8 = 88 ; 316 = (32)8 = 98
Vì 8 < 9 nên 88 < 98
Vậy 224 < 316.
b) Ta có: 5300 = (53)100 =125100 ; 3500 = (35)100 = 243100
Vì 125 < 243 nên 125100 < 243100
Vậy 5300 < 3500.
c) Ta có: 2700 = (27)100 = 128100; 5300 = (53)100 = 125100
Vì 128 > 125 nên 128100 > 125100
Vậy 2700 > 5300.
d) (làm tương tự)
Vậy 2400 = 4200.
e) (tương tự)
Vậy 9920 < 999910.
f) Ta có: 321 = 320. 3 = 910. 3 ; 231 = 230. 3 = 810. 2
Vì 910 > 810 ; 3 > 2
Nên 910. 3 > 810. 2
Vậy 321 > 231.
Bài 2: phương trình dễ ợt :v
Với mọi x ta có:
|x - 2001| = |2001 - x|
=> A = |x - 2002| + |2001 - x|
Với mọi x ta cũng có:
|x - 2002| + | 2001 - x| \(\ge\)|(x - 2002) + (2001 - x)|
A \(\ge\) |1|
A \(\ge\) 1
Dấu bằng xảy ra <=> (x - 2002).(2001 - x) \(\ge\) 0
=> x - 2002 \(\ge\) 0; 2001 - x \(\ge\) 0 (1)
hoặc x - 2002 \(\le\) 0; 2001 - x \(\le\) 0 (2)
Từ (1) => x > hoặc = 2002; x < hoặc = 2001 => x không có giá trị thoả mãn
Từ (2) => x < hoặc = 2002 ; x > hoặc = 2001 => 2001 \(\le\) x \(\le\) 2002
Vậy 2001 \(\le\) x \(\le\) 2002 thì A có giá trị nhỏ nhất = 1
\(x+y=0\Rightarrow x=-y\)
\(M=x^3-xy^2+x^2y-y^3-1\)
\(M=\left(-y\right)^3-\left(-y\right)\cdot y^2+\left(-y\right)^2y-y^3-1\)
\(M=\left(-y\right)^3-\left(-y\right)^3+y^3-y^3-1\)
\(\Rightarrow M=-1\)
Ta có:
M = x3 - xy2 + x2y - y3 - 1
M =( x3 + x2y) - ( xy2 + y3) - 1
M = x2( x + y) - y2 ( x + y) - 1
M = x2.0 - y2.0 - 1
M = 0 - 0 - 1
M = -1
Vậy M = -1
\(\left\{{}\begin{matrix}P\left(x\right)=x+x^2-x^3+2x^3+2=x^3+x^2+x+2\\Q\left(x\right)=1+3x-x^2-4x+x^3=x^3-x^2-x+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}P\left(x\right)+Q\left(x\right)=2x^3+3\\P\left(x\right)-Q\left(x\right)=2x^2+2x+1\end{matrix}\right.\)
tham khảo bài mk nha!
a) P(x) = (2x3 - x3) + x2 + x +2
= x3 +x2 +x +2
Q(x) = x3 - x2 +(-4x + 3x) +1
= x3 - x2 - x +1
b) ta có x = -2
\(\Rightarrow\) P(-2) = (-2)3 + (-2)2 + (-2) + 2
= -8 + 4 + (-2) +2
= -4