K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+3m-2\right)=-m+3\)

a. Phương trình có nghiệm khi:

\(\Delta'\ge0\Rightarrow m\le3\)

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3m-2\end{matrix}\right.\)

c.

\(x_1^2+x_2^2-x_1x_2=22\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=22\)

\(\Leftrightarrow4\left(m+1\right)^2-3\left(m^2+3m-2\right)=22\)

\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\left(loại\right)\\m=-3\end{matrix}\right.\)

20 tháng 7 2018

a) \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=5m+1\)

Để phương trình có nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow5m+1=0\Leftrightarrow m=-\frac{1}{5}.\)

b) Phương trình có 2 nghiệm phân biệt thì \(5m+1>0\Leftrightarrow m>-\frac{1}{5}.\)

Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2-3m\end{cases}}\)

Ta có: \(\left(x_1-2\right)\left(x_2-2\right)=x_1^2+x_2^2\Leftrightarrow x_1x_2-2\left(x_1+x_2\right)+4=\left(x_1+x_2\right)^2-2x_1x_2\)

\(\Leftrightarrow m^2-3m-4\left(m+1\right)+4=4\left(m+1\right)^2-2m^2+6m\)

\(\Leftrightarrow m^2-7m=2m^2+14m+4\)

\(\Leftrightarrow m^2+21m+4=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{-21+\sqrt{17}}{2}\left(tm\right)\\m=\frac{-21-\sqrt{17}}{2}\left(l\right)\end{cases}}\)

Vậy \(m=\frac{-21+\sqrt{17}}{2}\)

21 tháng 7 2018

\(\Delta\)= b2-4ac hình như thiếu số 4

23 tháng 5 2019

a, Để pt có nghiệm thì \(\Delta\ge0\)

Hay: \(\left(-3\right)^2-4\left(m-1\right)\ge0\)

\(\Leftrightarrow9-4m+4\ge0\)

\(\Leftrightarrow-4m\ge-13\)

\(\Leftrightarrow m\le\frac{13}{4}\)

b, Với \(m\le\frac{13}{4}\), theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=m-1\end{cases}}\)

Ta có: \(x_1^2-x_2^2=15\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=15\)

\(\Leftrightarrow\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=15\)

\(\Leftrightarrow3\sqrt{3^2-4\left(m-1\right)}=15\)

\(\Leftrightarrow\sqrt{9-4m+4}=5\)

\(\Leftrightarrow\sqrt{13-4m}=5\)

\(\Leftrightarrow13-4m=25\)

\(\Leftrightarrow4m=-12\)

\(\Leftrightarrow m=-3\left(tm\right)\) 

=.= hk tốt!!

15 tháng 5 2019

Delta= b^2 -4ac = (6)^2 - 4(-m^2 +8m -8)

=> 36 +4m(m-2+2) 

=> 36+4m^2-4m+8m

=> 4m^2 - 4m +44

=> (2m)^2 - 2×(2m)(1) + 1^2 + 43

=> (2m - 1)^2 +43 

Mà (2m -1)^2 > 0 vơiz mọi m

=> (2m-1)^2 +43 > 43 với mọi m

Vậy với mọi giá trị của m thì.....

18 tháng 5 2016

tích trước trả lời sau

20 tháng 3 2018

a, bn chỉ cần thay m =-2 vào pt là đc

b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0

m^2+3m+4=0

m=-1 và m=-4

với m=-1 thì x=2   với m=-4 thì vo nghiệm

vậy nghiệm còn lại là 2

20 tháng 3 2018

c bn sd đen ta ' là đc

d - bn viết hệ thức viet 

x1^2+x2^2=8

(X1+x2)^2-2x1.x2=8

- thay viet vào

30 tháng 4 2019

a,Phần này dễ, bạn tự làm nha!! :))

b, Để phương trình có 2 nghiệm khác 0 thì: \(\Delta^'\ge0\)

Hay: \(\left(-1\right)^2-\left(-3m^2\right)\ge0\)

\(\Leftrightarrow1+3m^2\ge0\)

Mà: \(1+3m^2>0\forall m\)

=> PT luôn có 2 nghiệm phân biệt với mọi m

Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-3m^2\end{cases}}\)

Ta có: \(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)

\(\Leftrightarrow\frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2}=\frac{8}{3}\)  (x1>x2)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{2\sqrt{2^2-4\left(-3m^2\right)}}{-3m^2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{2\sqrt{4+12m^2}}{-3m^2}=\frac{8}{3}\)

\(\Leftrightarrow6\sqrt{4+12m^2}=-24m^2\)

Mà: \(6\sqrt{4+12m^2}\ge0\forall m\)

và \(-24m^2\le0\forall m\)

=> Không có giá trị của m thỏa mãn

=.= hk tốt!!

( Có gì sai sót mong bạn bỏ qua ạ ><)

27 tháng 1 2023

sai từ khúc x1>x2 rồi minh mới giải xong m=+-1

 

 

6 tháng 4 2016

1)    a/     để pt có 2 nghiệm pb <=> đen ta phẩy > 0 

                                              <=> (m-1)2 - 1.m2 >0

                                              <=> m2-2m+1-m2 >0 

                                              <=> -2m+1 >0      .

                                              <=> -2m > -1

                                               <=> m < 1/2

 vậy khi m < 1/2 thì pt có 2 nghiệm pb

2) để pt có 2 nghiệm <=> đen ta >= 0

                              <=> (-2)2 - m  >= 0

                              <=> 4-m >= 0

                              <=> m <= 4

theo vi-et ta có:

x1+x2= 4

x1.x2= m

theo đầu bài ta có:

x12 + x22 = 10

<=> x12+2x1x2+x22 -2x1x2=10

<=> (x1+x2)2-2x1x2=10

<=> 42-2m = 10

<=> 2m =6

<=> m=3

vậy khi m = 3 thì pt có 2 nghiệm thỏa mãn x12+ x22=10                        

                               

                       

                                               

28 tháng 4 2019

a, Với \(m=\sqrt{2}\) thì pt trở thành

\(x^2-2x-2\sqrt{2}+1=0\)

Ta có \(\Delta'=1+2\sqrt{2}-1=2\sqrt{2}>0\)

Nên pt có 2 nghiệm phân biệt 

\(\orbr{\begin{cases}x=1-\sqrt{2\sqrt{2}}\\x=1+\sqrt{2\sqrt{2}}\end{cases}}\)

b, Ta có \(\Delta'=1+2m-1=2m\)

Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\ge0\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-2m+1\end{cases}}\)

Ta có \(x_2^2\left(x_1^2-1\right)+x_1^2\left(x_2^2-1\right)=8\)

\(\Leftrightarrow\left(x_1x_2\right)^2-x_2^2+\left(x_1x_2\right)^2-x_1^2=8\)

\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)^2+2x_1x_2=8\)

\(\Leftrightarrow2\left(-2m+1\right)^2-2^2+2\left(-2m+1\right)=8\)

\(\Leftrightarrow2\left(4m^2-4m+1\right)-4-4m+2=8\)

\(\Leftrightarrow8m^2-8m+2-4m-10=0\)

\(\Leftrightarrow8m^2-12m-8=0\)

\(\Leftrightarrow2m^2-3m-2=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)

\(\Leftrightarrow m=2\left(Do\cdot m>0\right)\)