Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}-\dfrac{3}{4}x+\dfrac{5}{2}=\dfrac{4}{5}x+\dfrac{7}{2}\\y=\dfrac{-3}{4}x+\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-\dfrac{7}{5}x=1\\y=\dfrac{-3}{4}x+\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=\dfrac{-3}{4}\cdot\dfrac{5}{7}+\dfrac{5}{2}=\dfrac{55}{28}\end{matrix}\right.\)
Bài 1:
ĐKXĐ: \(1\leq x\leq 3\)
Ta có:
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)
\(\Leftrightarrow \sqrt{x-1}-1+\sqrt{3-x}-1=3x^2-4x-4\)
\(\Leftrightarrow \frac{x-2}{\sqrt{x-1}+1}+\frac{2-x}{\sqrt{3-x}+1}=(x-2)(3x+2)\)
\(\Leftrightarrow (x-2)\left(3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}\right)=0(1)\)
Với mọi $1\leq x\leq 3$ ta luôn có \(3x+2\geq 5; \frac{1}{\sqrt{3-x}+1}>0; \frac{1}{\sqrt{x-1}+1}\leq 1\)
\(\Rightarrow 3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}>0(2)\)
Từ (1);(2) suy ra \(x-2=0\Rightarrow x=2\)
Vậy $x=2$ là nghiệm duy nhất của pt đã cho.
Bài 2:
Với mọi $x,y,z$ nguyên không âm thì :
\(2014^z=2012^x+2013^y\geq 2012^0+2013^0=2\Rightarrow z\geq 1\)
Với $z\geq 1$ thì ta luôn có \(2012^x+2013^y=2014^z\) là số chẵn
Mà \(2013^y\) luôn lẻ nên \(2012^x\) phải lẻ. Điều này chỉ xảy ra khi $x=0$
Vậy $x=0$
Khi đó ta có: \(1+2013^y=2014^z\)
Nếu $z=1$ thì dễ thu được $y=1$
Nếu $z>1$:
Ta có: \(2014^z\vdots 4(1)\)
Mà \(2013\equiv 1\pmod 4\Rightarrow 1+2013^y\equiv 1+1\equiv 2\pmod 4\)
Tức \(1+2013^y\not\vdots 4\) (mâu thuẫn với (1))
Vậy PT có nghiệm duy nhất \((x,y,z)=(0,1,1)\)
Lời giải:
Gọi hoành độ điểm đó là $a (a\neq 0)$ thì tung độ là $2a$. Vì điểm trên thuộc đths $y=\frac{1}{2}x^2$ nên:
$2a=\frac{1}{2}a^2$
$\Leftrightarrow 4a=a^2$
$\Leftrightarrow a^2-4a=0$
$\Leftrightarrow a(a-4)=0$
$\Leftrightarrow a=0$ hoặc $a=4$
Do $a\neq 0$ nên $a=4$
$\Rightarrow 2a=8$
Vậy điểm cần tìm có tọa độ $(4;8)$
\(x^2-x-2=0\)
\(\Leftrightarrow x^2+x-2x-2=0\)
\(\Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
a, Giải phương trình \(x^2-x-2=0\)
\(=''-1''^2-4\times1\times''-2''=1+8\) lớn hơn \(0\)
\(\sqrt{\Delta}=\sqrt{9}=3\)
\(\Rightarrow x_1=-1;x_2=2\)
b, Vẽ đồ thị bảng số
- Hàm số \(y=x^2\)
- Hàm số \(y=x+2\)
+ Cho \(x=0\Rightarrow2\) được điểm A '' 0,2 ''
+ Cho \(x=2\Rightarrow y=0\) được điềm '' -2 ; 0 ''
Đồi thị hàm số