Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)
Cho phương trình: x2 - (2m - 1)x - m = 0
Co \(\Delta=\left(-\left(2m-1\right)\right)^2-4.1.\left(-m\right)=4m^2-4m+1+4m=4m^2+1>0\)
Vi \(\Delta>0\) nen PT luon co ngiem phan biet voi moi gia tri cua m
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
Ở trên có đoạn mình đánh lộn \(\Delta'\) ra \(\Delta\) nhé
dcv_new
dcv - new
Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)
<=> x = 3 hoặc x = -2
Vậy m = -1 và x2 = - 2
a, Thay \(x_1=3\)vào phương trình , khi đó :
\(pt< =>\)\(3^2+3m+2m-4=0\)
\(< =>5m+5=0\)
\(< =>m=-\frac{5}{5}=-1\)
Thay \(m=-1\)vào phương trình , khi đó :
\(pt< =>x^2-x+2=0\)
\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)
Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)
b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)
Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)
Bạn thiếu đề rồi thì phải !
a. Δ' = b'2 - ac = (m-1)2 - (-2m-3) = m2 - 2m + 1 + 2m + 3
= m2 + 4 ≥ 4 > 0 ∀ m ∈ R
Vậy pt đã cho luôn có hai nghiệm x1; x2 phân biệt với mọi m thuộc R
b. Áp dụng Viet, ta có \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1\cdot x_2=-2m-3\end{matrix}\right.\)
Theo đề ta có \(\left(4x_1+5\right)\left(4x_2+5\right)+19=0\)
⇔ \(16x_1x_2+20x_1+20x_2+25+19=0\)
⇔ \(16x_1x_2+20\left(x_1+x_2\right)+44=0\)
⇔ \(16\left(-2m-3\right)+20\left[-2\left(m-1\right)\right]+44=0\)
⇔ \(-32m-48-40m+40+44=0\)
⇔ \(-72m+36=0\Leftrightarrow m=\frac{1}{2}\)
Vậy với m = \(\frac{1}{2}\)thì pt đã cho có hai nghiệm x1; x2 thỏa mãn điều kiện \(\left(4x_1+5\right)\left(4x_2+5\right)+19=0\)
a) đenta phẩy=m^2-m^2+1>0
=>.........................