\(\dfrac{ãx^2+bx+c}{a1x^2+b1x+c1}\) chứng minh rằng nếu \(\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

\(\dfrac{ax^2+bx^2+c}{a1x^2+b1x^2+c1}\)= \(\dfrac{ax^2}{a1x^2}=\dfrac{bx^2}{b1x^2}=\dfrac{c}{c1}\)

=\(\dfrac{a}{a1}=\dfrac{b}{b1}=\dfrac{c}{c1}\)

\(\Rightarrow x^2\) đã bị rút gọn nên ko ảnh hưởng gì đến giá trị P

13 tháng 12 2019

v

12 tháng 3 2017

ta đặt \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=k\)

suy ra: a=a'k; b=b'k; c=c'k

thay vào biểu thức P ta được:

\(\dfrac{a'kx^2+b'kx+c'k}{a'x^2+b'x+c'x}=\dfrac{k\left(a'x^2+b'x+c'\right)}{a'x^2+b'x+c'}=k\)

vậy nếu \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\) thì biểu thức P không phụ thuộc vào x

12 tháng 7 2017

giúp mik nha

mik tích cho

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

6 tháng 1 2018

Có : a/a1 = b/b1 = c/c1

=> ax^2/a1x^2 = bx/b1x = c/c1

ÁP dụng tính chất dãy tỉ số bằng nhau ta có :

ax^2/a1x^2 = bx/b1x = c/c1 = ax^2+bx+c/a1x^2+b1x+c1 

=> P = c/c1

=> Gía trị của biểu thức P ko phụ thuộc vào x

Tk mk nha

6 tháng 1 2018

đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)

\(\Rightarrow a=a_1k\text{ };\text{ }b=b_1k\text{ };\text{ }c=c_1k\)

Thay vào, ta được :

\(P=\frac{a_1kx^2+b_1kx+c_1k}{a_1x^2+b_1x+c_1}=\frac{k.\left(a_1x^2+b_1+c_1\right)}{a_1x^2+b_1x+c_1}=k\)

Vậy ....

3 tháng 4 2017

Câu 1

\(\left\{{}\begin{matrix}7A,7B\in N\\7B=7A+5\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7B>7A\\\dfrac{7A}{7B}=\dfrac{8}{9}\end{matrix}\right.\)\(\dfrac{7A}{7B}=\dfrac{8}{9}\Rightarrow\dfrac{7A}{8}=\dfrac{7B}{9}=\dfrac{7B-7A}{9-8}=7B-7A=5\)

\(\Rightarrow\left\{{}\begin{matrix}7A=8.5=40\left(emhs\right)\\7B=9.5=45\left(emhs\right)\end{matrix}\right.\)

3 tháng 4 2017

Câu2

Phần a

Tạm hiểu A=a {chuẩn A\(\ne a\)} vớ đề này hiểu giống nhau

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{\left(a-b\right)}{c-d}=\dfrac{\left(a+b\right)}{c+d}\)

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\dfrac{a}{c}\dfrac{b}{d}=\dfrac{ab}{cd}\)

phầnb

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)\(M=\left(\dfrac{a+b}{c}\right)\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)=2.2.2=8\)