\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Giải:

Đặt \(A=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)

Ta có:

\(A=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\dfrac{x+2y+z}{9a}\)

\(A=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-x}{2a+4b+2c+2a+b-c-4a+4b-c}=\dfrac{2x+y-x}{9b}\)

\(A=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{4a+8b-8a-4b+4c+4a-4b+c}=\dfrac{4x-4y+z}{9c}\)

\(\Rightarrow A=\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)

\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)

\(\Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2x+y-z}{b}=\dfrac{4x-4y+z}{c}\)

\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)

\(\RightarrowĐPCM\)

15 tháng 4 2020

được của ló đấy bạn

Đặt \(k=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)

Do đó: \(k=\dfrac{x}{a+2b+c}=\dfrac{2y}{4a+2b-2c}=\dfrac{z}{4b-4a-c}\)

\(k=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)

\(k=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4b-4a-c}\)

Theo t/c dãy tỉ số bằng nhau, ta có:

\(k=\dfrac{x+2y-z}{a+2b+c+4a+2b-2c-4b+4a+c}=\dfrac{x+2y-z}{9a}\)

\(k=\dfrac{2x+y+z}{2a+4b+2c+2a+b-a+4b-4a-c}=\dfrac{2x+y+z}{9b}\)

\(k=\dfrac{4x-4y-z}{4a+8b+4c-8a-4b+4c-4b+4a+c}=\dfrac{4x-4y-z}{9c}\)

\(\Rightarrow\dfrac{x+2y-z}{9a}=\dfrac{2x+y+z}{9b}=\dfrac{4x-4y-z}{9c}\)

\(\Rightarrow\dfrac{x+2y-z}{a}=\dfrac{2x+y+z}{b}=\dfrac{4x-4y-z}{c}\)

\(\Rightarrow\dfrac{a}{x+2y-z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y-z}\) => đpcm

4 tháng 8 2017

. Câu hỏi của Phạm Đức Minh

23 tháng 1 2018

Đặt A= \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)
Ta có:
\(A=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\dfrac{x+2y+z}{9a}\)
\(A=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b-c}=\dfrac{2x+y-z}{9b}\)\(A=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}=\dfrac{4x-4y+z}{9c}\)\(\Rightarrow A=\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)
\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)
\(\Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2x+y-z}{b}=\dfrac{4x-4y+z}{c}\)
\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)

6 tháng 12 2017

Đặt \(\dfrac{a}{x}\)=\(\dfrac{b}{y}\)=\(\dfrac{c}{z}\)=m

\(\Rightarrow\)a=xm ; b=ym ; c=zm

Thay a=xm ; b=ym ; c=zm vào \(\dfrac{ak^2+bk+c}{xk^2+yk+z}\)ta có:

\(\dfrac{ak^2+bk+c}{xk^2+yk+z}\)=\(\dfrac{xmk^2+ymk+zm}{xk^2+yk+z}\)=\(\dfrac{m\left(xk^2+yk+z\right)}{xk^2+yk+z}\)=m

\(\Rightarrow\)đpcm

6 tháng 12 2017

tick cho mk ná

20 tháng 4 2017

https://hoc24.vn/hoi-dap/question/217666.html