K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Giải:

Đặt \(A=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)

Ta có:

\(A=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\dfrac{x+2y+z}{9a}\)

\(A=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-x}{2a+4b+2c+2a+b-c-4a+4b-c}=\dfrac{2x+y-x}{9b}\)

\(A=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{4a+8b-8a-4b+4c+4a-4b+c}=\dfrac{4x-4y+z}{9c}\)

\(\Rightarrow A=\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)

\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)

\(\Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2x+y-z}{b}=\dfrac{4x-4y+z}{c}\)

\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)

\(\RightarrowĐPCM\)

15 tháng 4 2020

được của ló đấy bạn