Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(k=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)
Do đó: \(k=\dfrac{x}{a+2b+c}=\dfrac{2y}{4a+2b-2c}=\dfrac{z}{4b-4a-c}\)
\(k=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)
\(k=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4b-4a-c}\)
Theo t/c dãy tỉ số bằng nhau, ta có:
\(k=\dfrac{x+2y-z}{a+2b+c+4a+2b-2c-4b+4a+c}=\dfrac{x+2y-z}{9a}\)
\(k=\dfrac{2x+y+z}{2a+4b+2c+2a+b-a+4b-4a-c}=\dfrac{2x+y+z}{9b}\)
\(k=\dfrac{4x-4y-z}{4a+8b+4c-8a-4b+4c-4b+4a+c}=\dfrac{4x-4y-z}{9c}\)
\(\Rightarrow\dfrac{x+2y-z}{9a}=\dfrac{2x+y+z}{9b}=\dfrac{4x-4y-z}{9c}\)
\(\Rightarrow\dfrac{x+2y-z}{a}=\dfrac{2x+y+z}{b}=\dfrac{4x-4y-z}{c}\)
\(\Rightarrow\dfrac{a}{x+2y-z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y-z}\) => đpcm
Đặt A= \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)
Ta có:
\(A=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\dfrac{x+2y+z}{9a}\)
\(A=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b-c}=\dfrac{2x+y-z}{9b}\)\(A=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}=\dfrac{4x-4y+z}{9c}\)\(\Rightarrow A=\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)
\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)
\(\Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2x+y-z}{b}=\dfrac{4x-4y+z}{c}\)
\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
Giải:
Đặt \(A=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)
Ta có:
\(A=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\dfrac{x+2y+z}{9a}\)
\(A=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-x}{2a+4b+2c+2a+b-c-4a+4b-c}=\dfrac{2x+y-x}{9b}\)
\(A=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{4a+8b-8a-4b+4c+4a-4b+c}=\dfrac{4x-4y+z}{9c}\)
\(\Rightarrow A=\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)
\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)
\(\Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2x+y-z}{b}=\dfrac{4x-4y+z}{c}\)
\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
\(\RightarrowĐPCM\)
Áp dụng t/c của DTSBN , ta có :
+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+2\left(2a+b-c\right)+4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+4a+2b-2a-2c+4a-4b+c}\\ =\dfrac{x+2y+z}{\left(a+4a+4a\right)+\left(2b+2b-4b\right)+\left(c-2c+c\right)}\\ =\dfrac{x+2y+z}{9a}\left(1\right)\)
+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{2x+y-z}{2\left(a+2b+c\right)+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{\left(2a+2a-4a\right)+\left(4b+b+4b\right)+\left(2c-c+c\right)}\\ =\dfrac{2x+y-z}{9b}\left(2\right)\)
+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{4x-4y+z}{4\left(a+2b+c\right)-4\left(2a+b-c\right)++4a-4b+c}\\ =\dfrac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}\\ =\dfrac{4x-4y+z}{\left(4a-8a+4a\right)+\left(8b-4b-4b\right)+\left(4c+4c+c\right)}\\ =\dfrac{4x-4y+z}{9c}\left(3\right)\)
Từ (1);(2) và (3)
\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2a+y-z}{9b}=\dfrac{4x-4y+z}{9c}\\ \Rightarrow\dfrac{x+2y+z}{9a}\cdot9=\dfrac{2a+y-z}{9b}\cdot9=\dfrac{4x-4y+z}{9c}\cdot9\\ \Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2a+y-z}{b}=\dfrac{4x-4y+z}{c}\\ \Rightarrow\dfrac{a}{a+2y+z}=\dfrac{b}{2a+y-z}=\dfrac{c}{4x-4y+z}\left(đpcm\right)\)
Đặt \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=k\left(a+2b+c\right)\\y=k\left(2a+b-c\right)\\z=k\left(4a-4b+c\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{a}{k\left(a+2b+c\right)+2k\left(2a+b-c\right)+k\left(4a-4b+c\right)}=\dfrac{a}{k.9a}=\dfrac{1}{9k}\)
Tượng tự:
\(\dfrac{b}{2x+y-z}=\dfrac{b}{9bk}=\dfrac{1}{9k}\) ; \(\dfrac{c}{4x-4y+z}=\dfrac{c}{9k.c}=\dfrac{1}{9k}\)
\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
. Câu hỏi của Phạm Đức Minh