K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

\(\dfrac{ax^2+bx^2+c}{a1x^2+b1x^2+c1}\)= \(\dfrac{ax^2}{a1x^2}=\dfrac{bx^2}{b1x^2}=\dfrac{c}{c1}\)

=\(\dfrac{a}{a1}=\dfrac{b}{b1}=\dfrac{c}{c1}\)

\(\Rightarrow x^2\) đã bị rút gọn nên ko ảnh hưởng gì đến giá trị P

13 tháng 12 2019

v

12 tháng 7 2017

giúp mik nha

mik tích cho

12 tháng 3 2017

ta đặt \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=k\)

suy ra: a=a'k; b=b'k; c=c'k

thay vào biểu thức P ta được:

\(\dfrac{a'kx^2+b'kx+c'k}{a'x^2+b'x+c'x}=\dfrac{k\left(a'x^2+b'x+c'\right)}{a'x^2+b'x+c'}=k\)

vậy nếu \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\) thì biểu thức P không phụ thuộc vào x

6 tháng 1 2018

Có : a/a1 = b/b1 = c/c1

=> ax^2/a1x^2 = bx/b1x = c/c1

ÁP dụng tính chất dãy tỉ số bằng nhau ta có :

ax^2/a1x^2 = bx/b1x = c/c1 = ax^2+bx+c/a1x^2+b1x+c1 

=> P = c/c1

=> Gía trị của biểu thức P ko phụ thuộc vào x

Tk mk nha

6 tháng 1 2018

đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)

\(\Rightarrow a=a_1k\text{ };\text{ }b=b_1k\text{ };\text{ }c=c_1k\)

Thay vào, ta được :

\(P=\frac{a_1kx^2+b_1kx+c_1k}{a_1x^2+b_1x+c_1}=\frac{k.\left(a_1x^2+b_1+c_1\right)}{a_1x^2+b_1x+c_1}=k\)

Vậy ....